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Abstract

The major goals of this rsecti were to determine if Artificial Neural Networks

(ANNs) could be trained to classify the correlation signatures of two classes of spread

spectrum signals and four classes of spread spectrum signals. Also, the possibility

of training an ANN to classify features of the signatures other than signal class was

investigated. Radial Basis Function Networks and Back-Propagation Networks were

used for the classification problems.

Correlation signatures of four types or classes were obtained from United States

Army Harry Diamond Laboratories. The four types are as follows: direct sequence

(DS), linearly-stepped frequency hopped (LSFHI), randomly-driven frequency hopped

(RDFH), and a hybrid of direct sequence and randomly-driven frequency hopped

(HYB). These signatures were preprocessed and separated into various training and

test data sets for presentation to the neural networks.

Radial Basis Function Networks and Back-Propagation Networks trained di-

rectly on two classes (DS and LSFH) and four classes (DS, LSFH, RDFH, and HYB)

of correlation signatures. Classification accuracies ranged from 79% to 92% for the

two class problem and from 70% to 76% for the four class problem. The Radial Basis

Function Networks consistently produced classification accuracies from 5% to 10%

higher than accuracies produced by the Back-Propagation Networks. The Radial

Basis Function Networks produced this classification advantage in significantly less

training time for all casesan attempts to classify the signatures by parameters (e.g.

chip rate of DS signatures nd hopping rate of RDFH signatures) other than signal

type or class, the results wre inconclusive regarding the usefulness of ANNs.

xi



CLASSIFICATION OF CORRELATION

SIGNATURES OF SPREAD SPECTRUM

SIGNALS USING NEURAL NETWORKS

I. Introduction

1.1 Background

Spread-spectrum signals possess some very desirable qualities. The techniques

for generating and decoding these signals make them difficult to jam or intercept

(8:855). Due to these inherent benefits of spread spectrum, the United States can

expect present and future adversaries to use spread spectrum techniques. Therefore,

defeating spread spectrum is extremely important and desirable.

The U. S. Army Harry Diamond Laboratories has developed an acousto-optic

correlator that can very effectively intercept and capture the correlation signatures of

spread spectrum signals. Current methods for examining these captured signatures

involve a human operator and are not practic- for real-time investigation of the

signatures during a conflict (1:1-1-1-2).

1.2 Problem

A method for examining the captured correlation signatures in order to identify

features of an adversary's spread spectrum signals in real-time is needed. In conjunc-

tion with the correlator, a reliable method for extracting features of the signatures

would be a major step toward defeating spread spectrum techniques.
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1.3 Summary of Current Knowledge

The idea of using Artificial Neural Networks (ANNs) to examine the spread

spectrum correlation signatures was suggested by researchers at Harry Diamond Lab-

oratories (HDL). As a result, HDL is currently sponsoring AFIT research involving

ANN classification of spread spectrum signals. An AFIT thesis by DeBerry served

as the first step in this continuing research effort (1). The results of the previous

research will be stated in the following paragraphs.

It was shown that an ANN (three-layer perceptron using the mean-squared

error update rules) will train directly on the correlation signatures of a combination of

direct sequence (DS) and linear-stepped frequency hopped (LSFH) spread spectrum

signals. The perceptron networks correctly classified the test data from the two

classes about 80% of the time after 10,000 training iterations. At 10,000 iterations,

the networks had reached their maximum classification performance (1:5-1-5-2).

DeBerry also demonstrated that the perceptron's classification performances

could be modeled as a probability matrix similar to those used to model communi-

cation channels. The symmetry of the matrix was shown to depend on the ratio of

input vectors from the two classes (1:5-2-5-3).

Another result of DeBerry's thesis effort was that a majority vote of the three

networks (trained on different, but equivalent signals and tested with the same sig-

nals) showed a slight improvement in classification performance over that of a single

network. Also, the make-up of the training set was shown to have a much greater

impact on network performance than either the presentation order of the training

signals or the initialization of the network (1:5-4-5-5).

1.4 Assumptions

It will be assumed that the results are valid from the previous thesis effort using

ANNs to classify spread spectrum signals. The assumption of validity is justified by
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both the available documentation on the previous thesis effort and the thoroughness

and competency with which the previous thesis committee followed and reviewed

the research effort. Therefore, DeBerry's results will be used as a benchmark against

which to compare the results of this thesis effort.

1.5 Objectives

The primary objectives of this thesis are to answer the following questions:

1. Can a Radial Basis Function (RBF) ANN be trained to classify DS and LSFH

correlation signatures? If so, how does the classification performance of the

RBF network compare to that of the three-layer perceptron ANN?

2. What classification accuracy can be expected when randomly selecting corre-

lation signatures from the pool of available DS and LSFH to serve as training

and test vectors? How does this accuracy compare with the accuracy produced

by ANNs trained and tested with the vectors as selected for the previous thesis

effort (1)?

3. Can the networks be trained to classify correlation signatures from the following

four classes: direct sequence (DS), linear-stepped frequency hopped (LSFH),

randomly-driven frequency hopped (RDFH), and a hybrid of direct sequence

and randomly-driven frequency hopped (HYB). If so, how does the addition of

the two classes affect the performance of the networks?

4. Can the classification accuracy of the perceptron or back-propagation networks

be improved by taking a majority vote of three -networks using three different

learning algorithms (mean-squared error, cross entropy, and classification figure

of merit) to update the link weights during training?

5. Can the back-propagation or RBF networks be trained to classify parameters

of the correlation signatures other than the signal class?
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1.6 Scope

The eventual goal of using ANNs to classify spread spectrum correlation sig-

natures would be to develop and deploy hardware that could in real-time detect

features of an adversary's spread spectrum signals (1:1-2). However, this research

effort will be limited to a software analysis of the signatures in an effort to model

the performance of an eventual hardware system.

As stated in the section above, the analysis will include attempts to train

RBF and perceptron networks with correlation signatures from two and four classes.

First, RBF networks will be trained with data sets containing the same correlation

signatures as used in the previous thesis effort. Then, the networks will be trained

with data selected at random from the set of signatures available for testing and

training. These training attempts will be repeated for the four classes of signatures.

If the perceptron networks can learn on the randomized data, a majority vote of

networks using three types of back-propagation learning algorithms will be taken

and analyzed. Finally, attempts will be made to train the networks on the chip rate

of DS correlation signatures and the hopping rate of RDFH correlation signatures.

1.7 Methodology

The approach of this thesis effort will be very similar to that of the previous

thesis effort for the two class problem. The HDL will transmit the acousto-optic

correlation signature data files to an AFIT computer via MILNET. The data files

will be pre-processed on a personal computer to the format required by the ANN

simulator. The ANN simulator to be used in this effort was written by D. Zahirniak

(17). For this effort, the software will be run on SUN 3 workstations. The ANNs will

be trained with processed data files from the four classes of spread spectrum signals

and then tested with different data files from the four classes. The guidelines for

the research experiments are identified in a previous section of this chapter entitled

Scope. The output classification performance of the ANNs will be processed on

1-4



a personal computer into a format suitable for presentation in the thesis and for

analysis of the results.

1.8 Thesis Organization

Chapter 1 - has served as an introduction to the problem and sets the general guide-

lines for research.

Chapter 2 - will present background material for this research effort. The background

,'ill include information in the networks to be used and examples of recent research

using these networks.

Chapter 3 - will contain the methodology for this research effort.

Chapter 4 - will present the results of the research effort.

Chapter 5 - will contain the conclusions drawn from the research results as well as

recommendations -for future related research.
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II. Background Material

2.1 Introduction

The U. S. Army Harry Diamond Laboratories is currently sponsoring AFIT

research in the area of classifying spread spectrum signals with Artificial Neural

Networks (ANNs). This new and important area of research will be developed in

this chapter by introducing the signals and networks to be used in the research and

describing several recent research efforts using the networks.

2.2 Spread Spectrum Signals

Spread spectrum signals possess some very desirable properties. Their most

important property is the advantage over interference which makes spread spectrum

systems very difficult to jam (8:855). Since the United States can expect future

adversaries to use spread spectrum, then defeating this technology is very important.

The following sections contain an introduction to spread spectrum theory and an

explanation of the reasoning behind the current research using ANNs to classify

spread spectrum signals.

2.2.1 Theory. A good definition of spread spectrum is as follows:

Spread spectrum is a means of transmission in which the signal occupies
a bandwidth in excess of the minimum necessary to send the information;
the band spread is accomplished by means of a code which is independent
of the data, and a synchronized reception with the code at the receiver
is used for despreading and subsequent data recovery. (8:855)

The common spread spectrum techniques include direct sequence (DS), frequency

hopped (FH), and hybrid (DS/FH). The difference between the various techniques

is the way a code sequence is used to spread the signal spectrum. For example, the
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direct sequence digital code sequence modulates the carrier while the code sequence

in a frequency hopping system is used to dictate carrier frequency shift increments.

Regardless of the spread spectrum technique used, the code sequence is used to

spread the bandwidth before transmission and is processed with the signal upon

reception to remove the excess bandwidth and allow data recovery (6:1-3).

2.2.2 ANN Connection. The Harry Diamond Laboratories has developed an

acousto-optic correlator that can very effectively intercept and capture the correla-

tion signatures of spread spectrum signals. Current methods for examining these

signatures involve a human operator and are not practical for real-time investigation

of the signals during a conflict. The eventual goal of using ANNs to classify spread

spectrum correlation signatures would-be the hardware development and deployment

of a network that could in real-time detect features of an adversary's spread spectrum

signals. This implementation could .rove crucial in a future conflict (1:1-1-1-2).

2.3 Artificial Neural Networks

Lippman's article "An Introduction to-Computing with Neural Networks" pro-

vides an excellent introduction to ANNs. In general, neural networks consist of com-

putational elements connected by weighted links. The weights are adjusted during

the training and/or use of the network in an attempt to achieve human-like pattern

recognition. Lipman reviewed six major network models by describing the design

and purpose of each. Of these six ANN models, only two, the Kohonen Feature Map

and the Perceptron, can be used with continuous valued input signals such as that

provided to AFIT (3:4-6). DeBerry determined in his research that a three-layer

perceptron or back-propagation network was a good choice for the spread spectrum

classification problem (1).

However, in a 1989 article entitled "Pattern Classification Using Neural Net-

works", Lippman discusses a new type of ANN called Radial Basis Function (RBF)

2-2



classifiers. These networks have been compared to back-propagation (perceptron)

networks for several speech classification problems. The RBF networks' classifica-

tion performances were very similar to the back-propagation networks' performances.

The RBF networks required significantly less training time to accomplish the similar

performance (4:62).

Since this research effort will involve both the perceptron and RBF networks,

the following review of ANNs will cover both the multi-layer perceptron using back-

propagation training algorithms and the RBF network using a variety of training

algorithms.

2.4 Multi-layer Perceptron Topology

The multi-layer perceptron consists of a set of input nodes, output nodes,

and one or more layers of nodes in between. A three-layer perceptron, as shown

in Figure 2.1, has two internal or hidden layers of nodes. The hidden layer nodes

are non-linear computational elements that hold the key to the capabilities of the

perceptron. As shown in "igure 2.2, the node of a multi-layer perceptron sums

weighted inputs from every node in the previous layer of the network and passes

this sum through a non-linearity such as a hard limiter or a sigmoid (3:4-15). An

internal threshold is then subtracted from the value produced by the non-linearity.

The resulting value is then passed via weighted links to every node on the next layer

of the network (3:5-16).
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Figure 2.1. Three-layer Perceptron (3:16)

The output of a node can be expressed by the following functional relationship

(3:5):
N--

zif- Xw - o) (2.1)

where

y = output
w = ih connection weight
X, = ith input
0 = threshold
f = nonlinear function

There exist no hard rules as to the number of hidden layer nodes required when

using a multi-layer perceptron (13:57).
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Figure 2.2. Single Perceptron Node (10:48)

2.5 Multi-layer Perceptron Training

The multi-layer perceptron is trained using a back-propagation training al-

gorithm. For back-propagation algorithms, we shall use a sigmoid nonlinearity as

shown in Figure 2.2. The sigmoid takes the following functional form:

1
f (a + - (2.2)

where ce is the argument of the function in Equation (2.1). Before training the

network, one sets all the link weights and node thresholds to small random values.
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There are three classification objective functions currently used for back-propa-

gation learning to adjust the link weights and node biases during training of the

perceptron networks. These functions are the Mean Square Error (MSE), Cross

Entropy (CE), and the Classification Figure of Merit (CFM) functions (15:217).

Training is accomplished by presenting the continuous valued inputs and the desired

outp,.t for each input to the network. As each training vector is presented to the

network, the link weights and the node biases are adjusted based on the chosen

classification function. These adjustments are the method by which the network

learns the training data (11:322). The next three paragraphs will serve to introduce

the three objective functions.

2.5.1 Mean-Squared Error (AMSE) Objective Function. The MSE objective

function used in back-propagation networks takes the following fun.tional form:

MSE= Z(Yn d-)2  (2.3)
ni=1

where N is the number of output nodes or classes, y, is the network output for node

n, and d, is the desired output for nod- n. The MSE function acts to minimize the

mean-squared erior between the actual and desired outputs of the networks' output

layer nodes (15:217). The desired output of the output layer node associated with

the correct class is set to 1 and all other output nodes to 0 (3:17). The MSE function

was the first of the three functions to be used with ANNs and is still the most widely

used as evidenced by the number of papers published using this function.

2.5.2 Cross Entropy (CE) Objective Function. The CE objective function

sees a node output as the probability that the node's desired output is a "1" which

would make that node represent the correct class for a given input, The function
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takes the following form:

1 N
CL = -- [dIog(y,) + (1- d,,)log(1 - y,,)I (2.4)

n=1

where N is the number of output nc s or classes, y, is the network output for node

n, and d, is the desired output for node n. The CE function acts to minimize the

cross entropy between the actual and desired r,A.obability density functions driving a

node (15:217). As with the MSE function, the desired output of the node representing

the correct class is set to 1 and all other nodes' desired outputs are set to 0.

2.5.3 Classification Figure of Merit (CFM) Objective Function. The CFM

objective function is as follows:

N-i I + e(- #n+)) (2.5)

where

8n = Yc- Yn

YC = response of the correct node
y, = response of the incorrect node
N = total number of output nodes or classes
a = sigmoid scaling parameter
/3 = sigmoid discontinuity parameter

= sigmoid lateral shift parameter

The CFM function compares the output of the correct node that should be high with

all other nodes that should be low. Then, a sigmoidal controlled by the parameters

a, P3, and C is applied to the differences. Thus, the CFM function concentrates

on reducing misclassifications as a means to achieve a higher correct classification

(15:219).

2.5.4 Application of Objective Functions to ANN. In order to apply a partic-

ular objective function to a network, update rules or equations based on the function
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Figure 2.3. Back-Propagation Network

must be developed for the link weights and node offsets. The network will use these

rules to learn the training data. These equations were derived for the MSE, CE, and

CFM objective functions in (17). The MSE and CE update rules were derived by

minimizing the MSE and CE functions with respect to network parameters. There-

fore, the MSE and CE update rules act to minimize the error between the actual

and desired network outputs. However, the CFM objective function is maximized

with respect to the network parameters to derive the CFM update rules. The CFM

update rules act to maximize the difference between the correct output node and all

other out put nodes (15:216).
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2.5.5 Definition of Terms of Update Rules. This section of this document

contains the update rules for the link weights and the node offsets of the MSE, CE,

and CFM objective functions. The update rules are for the feed-forward ANN as

shown in Figure 2.3. In the figure, the superscript on a weight identifies the network

layer while the subscripts identify the nodes connected by each link. The following

definitions should aide in understanding of the rules which are listed in the next

subsection:

K = a specific input layer node as shown in Figure 2.3
L = a specific node in first hidden layer as shown in Figure 2.3
M = a specific node in second hidden layer as shown in Figure 2.3
N = a specific node in output layer as shown in Figure 2.3

w i = weight linking a node k in layer 0 to a node 1 in layer 1
w1, weight linking a node I in layer I to a node m in layer 2
wn -weight linking a node m in layer 2 to a node n in layer 3

WKL = weight linking nodes K and L in Figure 2.1
W2LM = weight linking nodes L and M in Figure 2.1WLMN = weight linking nodes M and N in Figure 2.1

O =node bias for wi.d
WAI= node bias for wa
0= node bias for wl

0= node bias for W2CL

= node bias for WLM

0M = node bias for wLM
N= node bias for WMN

y, = actual output for a node n in output layer
d, = desired output for a node n in output layer
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YN = actual output for output node N of Figure 2.1
dN = desired output for output node N of Figure 2.1
YC = correct node output for CFM function

77 = learning rate
a = sigmoid scaling parameter for CFM function
f = sigmoid discontinuity parameter for CFM function

= sigmoid lateral shift parameter for CFM function

1ZN = e-PYC+#YN+

2.5.6 MSE, CE, and CFM Update Rules. Each update rule listed below are

for the back-propagation network as shown in Figure 2.3. The letter C is used to

represent the correct output node in the CFM update equations, although node C

is not shown in the figure. The networks adjust the link weights between adjacent

layer nodes based on the weight update equations. The networks use the node bias

equations to calculate the bias or threshold to be subtracted at each node as shown

by Equation (2.1) in Section 2.4. The superscript (+) refers to the updated value of

a weight or node bias after a training vector has been applied and the superscript

(-) refers to the previous value. The equations are derived in (17).

For the MSE update rules, 7 = 2A/N where A is a constant.

The MSE link weight update equations are as follows:

S 3 (y - dn)Y - Y.)ym (2.6)

for each m = 1,2,...,M and n = 1,2,...,N

N
S = WM _ Z(yn-d.)Yn(I-Yn)WmnYm(1-Ym)YJ (2.7)

n=1

for each l = 1,2,...,L and m .= 1, 2,...,M
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N[
M 1+WI

k1. = ki -, [(Y,, - dn)Y,,(I - n)
m1

E [Wmnym(1 - ym)WImyi(l - Y)YkI (2.8)

for each k = 1, 2, ... , K and 1= 1, 2, ...

The MSE node bias update equations are as follows:

03+ = o3- n dn)yn(1 - yn) (2.9)

for each n =1, 2,..., N

N
o2 - - 7 L[(y, - d)y (1 yn)wmnym(1 Ym) (2.10)

n=1
for each m = 1, 2,. ..,M

0+ ;o0 -1Z[(yn - dn)Yn(1 -Yn)

X E [WmnYm(1 - ym)Wimy1(1 - Yl (2.11)
m=1

for each I = 1,2, . .. ,L

For the CE update rules, q = A/[Nn(1O)] where A is a constant.

The CE link weight update equations are as follows:

3+ 3-

t = W + 7(dn- yn)ym (2.12)

for each-m =12,...,M and n =1,2,...,N

N
= W2 + 2- .(, y,,)Wmnym(- ym)y,] (2.13)Wl Im-+7 : (n- _UWnm IY)

n=l

for eachl= 12, ... ,L and m =1,2,...,M
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I+ I- N [(m
=k WkI + 7iZ [(dn - Y-,) EZ[WmnYm

n=1 Im----

x (1 - Ym)WIMYI(1 - YI)]] (2:14)

for each k = 1,2,...,K and 1,2,...,L

The CE node bias update equations are as follows:

- + 7(d- yn) (2.15)

for each n =1, 2,... N

N
S - +n7 [(dn-Yn)WmnYm( -YM) (2.16)

for each =1,2,. .. ,M

= h+77Z [(dn Yn)Z[WmnYm
n=I1 m=l

x (1 - ym)WImyI(1 - YI)I] (2.17)

for each l=1,2,...,L

For the CFM update rules, 77 = Acfl/(N - 1) where A is a constant.

The CFM link weight update equations are as follows:

For the weight linking a layer 2 node m to an incorrect output node n:

3+ 3- 7]Zn(1 -Zn)Yn(1 Yn)Ym) (2.18)

for each m 1,2,... ,M and n= 1,2, ... ,N

For the weight linking a layer 2 node m to a correct output node C:

N
WMo= wC+ + [Zn(1I -Z)YC(1- YC)Ym] (2.19)

n=l,n9c

for each m= 1,2,... M

2-12



N
2+= wT+77 Z [z.(iz.)[yo(iyc)Wire -l Z I- Z. _( '

n=l,nic

XWmc - yn(l - yn)Wmn]Ym(l - Ym)Yl] (2.20)

for each l= 1,2,...,L and m 1, 2,.M

Wkl Wkl 7 , [Zn .- Z,)Y( ) [wmc Yn(l Yn)

n=l,ne m=l

M
x E [wmnYm(1 - Ym)Wmyl( )k] (2.21)

m=l

for each k = 1, 2,. .. ,If and 1= 1, 2, ... ,L

For the node bias of an incorrect output node n:

03 + = 0- Yz(1 - Zn)Y(1- Yn) (2.22)

for each n = 1,2,...,N

For the node bias of a correct output node C:

N
- - + 7 E [z(1- z)yc(1- Yc)] (2.23)

n=l,n#c

N
19+ = O -+ /  [z(1-zn)[y(1-y,)

n=l,noc

XWMc - yn(1 - yn)Wmn]ym(1 - Yi)] (2.24)

for each m = 1,2, ... ,M

N FM
+= Oh- + 3 zn(1- zn)Yc(1-Y,) E wmC-Yn(1Yn)

n=l,noc =

X E3 [Wn~m (1 - Y,)WImYi(1 - Yl)] (2.25)
M=l

for each I- 1,2,...,L
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2.6 Multi-layer Perceptron Usage

The perceptron network is used by applying inputs of unknown types or classes

to the network inputs. The network should be tested or used with different vectors

than those it was trained with, although the vectors should be similar for the network

to be of use. The network will choose a class which the input signal is most similar

to from the classes presented during training (1:2-7).

2.7 Previous Research Using Perceptrons

A great deal of research has been accomplished over the last few years using

the multi-layer perceptron. The following paragraphs will describe four such research

efforts. In each case, multi-layer perceptrons using back-propagation learning rules

were applied in an attempt to solve an existing problem.

2.7.1 Noise Reduction Using Perceptron. Tamura's experiments used the

perceptron networks to reduce noise in speech signals. Other available noise re-

duction techniques have limitations due to the necessity of parameter estimates and

other simplifying assumptions. A four-layer perceptron with 60 units per layer was

chosen as a model that could in principle map any set of noisy signals to a set of

noise-free signals. The MSE back-propagation algorithm was used with a sigmoid

as the node non-linearity. The noisy speech was formed by mixing 5000 Japanese

words with non-stationary computer room noise. Tamura chose 216 of these words

to use in training and testing of the networks (12:553-554).

The training was accomplished by using the noisy words as inputs and the

noise-free words as the target outputs. _.,e network repeatedly scanned the words

until convergence was achieved in about 200 scans and 3 weeks on an Alliant Super-

computer. The network was tested on the 216 words as well as other words and was

shown to reduce noise. When the noise-reduced speech from the perceptron was
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compared with that from the traditional power spectral method, the perceptron's

speech was cleaner, although no more intelligible (12:554-556).

2.7.2 Sonar Target Classification Using Perceptron. Gorman used a two-

layer perceptron to classify targets using sonar returns. The MSE back-propagation

algorithm was used to train the network. The two targets were a metal cylinder and

a rock shaped like a cylinder. The sonar returns were collected at various aspect

angles. The experiments were designed to determine if the networks could classify

the targets into two classes. Also, the effects that the number of hidden nodes and

the aspect angles would have on classification performance were to be examined

(2:1135-1137).

The experiments were performed with identical training and test vectors on

networks containing 0, 2, 3, 6, 12, and 24 hidden nodes. Each of the networks

were trained with both aspect angle dependent and independent returns. For the

dependent case, returns for network training were selected to insure various aspect

angles were represented. For the independent case, returns were selected at random

(2:1137).

The results showed that the networks would converge with the sonar returns as

inputs. The performance of the networks, in terms of percent of correct classification,

improved as the-number of hidden nodes increased from 0 to 12, although increasing

the nodes to 24 produced no further improvement. In terms of aspect angle, the

networks trained with aspect angle independent returns performed better than those

trained with aspect angle dependent returns (2:1138-1140).

2.7.3 Radar Data Classification Using Perceptron. Another target recogni-

tion research effort wab conducted by Troxel. He used a three-layer perceptron with

MSE back-propagation training riles to classify radar data from tanks and trucks.

The targets were positioned at various aspect angles. Troxel used a doppler seg-

menter on the radar returns and then transformed the segmented returns into a
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position, scale, and rotation invariant (PSRI) feature space. The transformed data

was correlated with the feature space and the peak of the correlation output was

identified. Forty-nine points around the peak were chosen and normalized for pre-

sentation to the networks. The network performed with a classification accuracy of

near 80% on the test data (14:593-600).

2.7.4 Phoneme Recognition Using the MSE, CE, and CFM Functions. Waibel

compared the MSE, CE, and CFM functions for the /b, d, g/ phoneme recognition

task. Japanese speech data was obtained, sampled, parsed of the phonemes and

Hamming windowed. Then, 256-point DFTs were computed and used to gener-

ate coefficient spectra. The spectra were normalized for presentation to the back-

propagation ANNs (15:216). Specific details concerning the experimental conditions

can be found in (16).

The results showed that the test data error rate for the networks using the

CFM function was 14% lower than the error rate using the MSE function and 18%

lower than the rate when using the CE function. Also, due to the disjoint nature

of the misclassified test vectors from the three networks, an arbitration scheme was

developed to reduce misclassifications. The scheme involved summing of the different

networks' outputs and dividing by the number of outputs summed. The highest

of the arbitrated outputs was chosen as the correct class. Although summing the

outputs of any two of the functions' networks showed some classification performance

improvement, the best results were obtained when all three different networks were

arbitrated. About 30% of the errors made by the MSE network alone were corrected

when all three types of networks were arbitrated (15).

2-16



0.9 - exp(-(--5)*I(x5)) -

0.8 *1
0.7 1
0.6 -
0.5 1
0.4 -

0.3 t

0.2
0.1

0
0 2 4 6 8 10

Figure 2.4. One Dimensional Radial Basis Function (17)

2.8 Radial Basis Function (RBF) Networks

An RBF is a radially symmetric function with a single maximum. A one

dimensional RBF is shown in Figure 2.4. A RBF neural network acts to position

the centers of the RBFs into regions where training vectors are present. An RBF

network consists of three layers: an input layer to which the vectors are applied,

a middle layer which places the RBFs, and an output layer with a linear function.

All nodes of the input layer are connected to all nodes of the hidden, middle layer

which are connected to all nodes of the output layer (5:133-135). A example of RBF

network is shown in Figure 2.5. Weights link the input layer to the hidden layer

and the hidden layer to the output layer. There are several algorithms for setting or

adjusting both sets of weights. There are also several rules for determining the size

or spread of the "Fs. The following sections Hill diMub bufe of the algorilms

used to calculate the input link weights, the sigma rules used to determine the spread

of the RBFs, and the methods for calculating the output link weights.
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Figure 2.5. RBF Neural Network (17)

RBF networks differ from the back-propagation networks in several ways. First,

the RBF always have one hidden layer of nodes while the back- propagation networsks

may have more than one. The RBF networks use gaussian-like functions and the

back-propagation networks use sigmoids. The back- propagation networks gener-J

ally require thousands of training iterations since all layers of link weights must

be adjusted as function of the outputs. However, most RBF training algorithms :

may require one or very few iterations to position the functions. The training time

required for training is usually many time less for RBF networks than for back-

propagation networks. Previous research shows that RBF networks require more

hidden layer nodes and training data than back- propagation networks for some clas-

sification problems (4:62) (5:133-134).
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2.8.1 Nodes at Data Points Algorithm. This training algorithm calls for a

RBF to be centered about a point corresponding to the features of each training

vector. Therefore, a training set of 1,000 vectors would require 1,000 RBFs. The

weight vector for the I'l RBF will be the same as the feature vector for the I'h training

exemplar:

01 =(2.26)

Therefore, the output for the 1 h RBF due to the pih input training vector is as

follows:
e (xk =

l 2k (2.27)

where K is the number of input nodes or sample points per vector, Xpk is the value

of the kth sample point of input vector p, xat is the feture vector from input node

to hidden layer nod. 1, and ok is the spread of the RBF of node I due to input node

k.

Advantages of the Nodes at Data Points algorithm include the negligible time

required for setting weights li-king the input and hidden layers and that each RBF

represents a class of data at it's peak output. Disadvantages include the large number

of nodes which are required for large sets of training data. The time needed to

compute the link weights between the hidden and output layers increases directly as

the number of hidden layer nodes increases (17).

2.8.2 Kohonen Algorithm. The Kohonen Learning Algorithm is a clustering

algorithm that learns the underlying probability density functions of the training

vectors. For this algorithm, weights should be initialized to small random values

and the vectors normalized to the range of the weights. The algorithm works with a

rectangular grid of nodes the size of which must be selected by the network user. As

each input is presented to the network, the Euclidean distance from that input to all
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nodes of the hidden or Kohonen layer is computed based on the following equation:

N

dj = - wj) (2.28)
i=1

where N is the number of inputs to the network, xi is the input to the ith node of

the input layer, and w,, is the weight between the ith input node and the jh hidden

layer node. Then, the weights for the node with smallest distance and other nodes

in the neighborhood of that node are updated by the following equation:

wq(t + 1) = wii(t) + i7(x - wij) (2.29)

where w0 is the weight between the i~h input node and the ji, hidden layer node

and x, is the input to the i th node of the input layer, and 77 is the learning parameter

or gain. As training proceeds for a specified number of iterations, the gain, 7/, and

the size of the neighborhood decreases (10:64-67). When training is finished, RBFs

would- be positioned to represent a cluster of training vector, hopefully all from the

same class.

An advantage of Kohonen training is that the number of nodes can be much

less than the number of input vectors since one node of RBF can represent many

vectors. A disadvantage is that Kohonen training takes much longer than other types

of RBF training algorithms.

2.8.3 K-Means Algorithm. The K-Means algorithm adjusts the weights from

the input layer to the hidden, middle layer in order to minimize a least mean square

criterion. When this algorithm is used with an RBF network of K hidden layer nodes,

RBFs are assigned to represent the first K training vectors. Then, each successive
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training vector is assigned to a cluster as follows:

i,, E Si if I j l - Ij < - (2.30)

for i = 1,2,..., K and i # j. For the above expression, . P is the pt, pattern vector, Si

is the jh cluster, zD1 is the weight associated with S,, and z, is the weight associated

with a different cluster Si. The distances used are Euclidean distances. Once all

the training vectors have been assigned to clusters, the average of each cluster is

computed as follows:
-1 Nvo

Wj T ;x, (2.31)
rnc=l

where Nc is the number of training vectors assigned to the cluster, ! is a pattern

vector assigned to the cluster, and zD1 is the weight associated with cluster 1. Training

continues until the weights, or cluster centers, no longer change when inputs are

presented (17).

An advantage of this training algorithm is that the number of nodes can be

significantly less than the number of training vectors. A disadvantage is that the

number of nodes must be selected prior to training and there is no formula or method

for determining the best number.

2.8.4 Center at Class/Cluster Averages Algorithm. With this algorithm, the

weights or cluster centers are adjusted or shifted during training to points represent-

ing the centers of clusters from the same class. The first training vector and the class

of that vector is presented to the network. A node is created with weights to match

this vector. Then, the remaining training vectors are presented to the network and
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clusters are assigned as follows:

X E Si if I11 - jll < - tmU< C (2.32)

and the class of X is the same as Si. Here, X is the new ,,attern vector, Sj is the

jih cluster, fo, is the weight associated with Sj, ODi is the weight associated with Si,

and C is the selected cluster radius. If the distances to all present nodes of the same

vector class as the new vector are greater than C, a new node or cluster center is

created. If the new training vector is assigned to a present cluster, the weights of

that node are adjusted as follows:

Oj(t + 1) = w@) + XN+1 - wj(t) (2.33)
N+I

where zDj(t) is the previous average of the N pattern vectors in that cluster, @, (t + 1)

is the average after the addition of the new vector, and ZN+l is the pattern vector

N -F 1 (17). Training continues until all training vectors are assigned to a cluster

and the weights are adjusted for the last presented training vector.

Two advantages of the Center at Class Averages algocithm are that the number

of nodes do L.it have to be pre-selected and these nodes may number much less than

the number of training vectors. A disadvantage of this algorithm is that the radius

C must be pre-selected with no method for determining the best radius.
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2.8.5 Set Sigmas to a Constant Rule. For this rule, the sigmas of the RBFs

are set to some constant, C. The output for an RBF node is calculated as follows:

Ypi = e 2C A.=(xpk
-
W;k

l
)2 (2.34)

where ypl is the output for the l" RBF due to the pth training vector, xpk is the value

of the k point of input vector p, wuk is the weight of RBF node 1 due to the kth

point of input vector p, and K is the number of input layers or sampled points (17).

2.8.6 Set Sigmas at P-Neighbor Averages Rule. For this sigma rule, the width

of the RBF would be set equal to the root mean square of the Euclidean distances

of the P nearest neighboring RBFs (5:137). The distance between two RBF nodes

would be calculated from the following function:

dj= Z(wkj - wki)2  (2.35)
k=1

where wkj is the weight from input node k to node j, wk, is the weight from input

node k to node i, and K is the number of sample points in the input training vectors.

The spread for the ith RBF is set as follows:

o = -(2.36)

where P is the number of neighbors to be considered and dp is the distance between

node i and node p (17).

2.8.7 Scale Sigmas by Constant Rule. In this algorithm, the sigma is preset to

a constant and then decreased during training to prevent RBF nodes from responding
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strongly to vectors from different classes. The output for each RBF node is calculated

as follows:

YP- -C 2 k-=, (XpkwkL) (2.37)

where Yp is the output of the l' node due to input pattern p, C is the preset spread,

K is the number of input layers or sampled points, xpk is the value of the ic01 sample

point of input vector p, and wkl is the weight of RBF node I due to the kth point of

input vector p. If this calculated Ypi > T, a preset threshold, then:

ol(t + 1) = (1 - 0)o'1(t) (2.38)

where C is a scaling constant applied to the sigma until ypi < T. This process is

repeated for all training vectors (17).

2.8.8 Back-Propagation Training. The weights linking the hidden layer or

RBF nodes to the output nodes can be found by any of the three back-propagation al-

gorithms previously introduced. All three algorithm functions (MSE, CE, and CFM)

would use their weight update rules to minimize the chosen function. The training

for these weights would continue until the error rate reached an acceptable level.

The training time of the networks will increase many times when back-propagation

is used to train the link weights between the hidden layer nodes and the output

nodes.
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2.8.9 Matrix Inversion. The Matrix Inversion algorithm is a quick, effective

way to calculate the link weights between the RBF and the output nodes. The total

error due to all input vectors is as follows:

1 P M
E = - E E (YPm - dp.) 2  (2.39)

p=I mil

where dpm is the desired value for the th output node due to the pth training vector,

Ypm is the actual value, M is the number of output nodes, P is number of training

vectors. For a particular node B in the hidden layer and a particular node D in the

output layer, the error can be minimized by setting:

aE/&WBD = 0 (2.40)

Through a process of taking this derivative, defining several matrices, and manip-

ulating the above equation and the matrices, the following weight equation can be

derived (17):

WBD= E YpldpD NBI (2.41)
1=1 ---1

where

WBD = optimized weight between nodes B and D
L = number of RBF or hidden layer nodes
P = number of training vectors

ypt = output of the 1lh R13F node due to
pth input vector

djD = desired output of the Dth output node
due to the pO, input vector

NBI = (MT) - 1

M = matrix containing the summation, over all
vectors, of the product of each RBF output,

for a given input pattern and t e B14

RBF output for that pattern
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2.8.10 Radial Basis Function Usage. To use an RBF network, an algorithm

for both sets of weights linking the three layers and a sigma rule must be chosen. The

input patterns are then presented to the network along with the desired outputs for

the RBF algorithms except the Kohonen algorithm. Upon completion of training,

vectors of an unknown class are presented to the network. Based on the position

that the RBF network has placed the set of RBFs, the network chooses the class of

the vector fiom the classes it was trained on.

2.9 Previous Research Using RBFs

Over the past several years, many research efforts have been accomplished

using RBFs. The RBF networks have been applied to various classification tasks

with success. The following subsections will describe three research efforts in which

RBF networks were applied to classification problems.

2.9.1 Digit Classification Using RBFs. Nowlan used R.BF networks to clas-

sif) ,. set of hand drawn digits from twelve subjects. There were 320 training patterns

and 160 test patterns. The patterns were digitized for presentation to the networks.

Nowlan tried both spherical and ellipsoidal gaussians as the RBFs. RBFs were po-

sitioned in the input space by two algorithms. A form of the Nodes at Data Points

algorithm was used in which the gaussians were assigned to points representing the

training vectors with the highest probability of gene 'ating that observation. The K-

means algorithm was also used in which all training patterns have an equal impact

on the position of the RBFs (7:4-7).

The results of the experiment showed that networks trained with the K-means

algorithm correctly classified the test data about 4% more accurately than networks

trained using the Nodes at Data Points algorithm. The spherical R{BFs performed

about 2% better than the ellipsoidal RBFs. As the number of hidden layers nodes

increased from 40 to 150, the classification accuracy increased by about 3%. The

2-26



best classification performance with an RBF networks was 94% using 150 spherical

gaussians and the K-means algorithm. In much less CPU tirm e, this result equaled

the classification performance of a sophisti,.Led back-propagation network (7

2.9.2 Vowel Recognition Using RBFs. Nowlan also applied a speaker inde-

pendent vowel recognition tasks to iB1, networks. The training and test vectors

were digitized from the first and second formant frequencies of 10 .vowels spoken

by multiple male and female speakers. The networks were trained with 338 vectors

and tested with 333 vectors. This data was applied to networks employing spherical

RBFs and networks employing ellipsoidal RBFs. The two algorithms introduced in

Subsection 2.9.1 were also applied to this problem (7:8-9).

The results again showed that the spherical gaussians provided a higher classi-

fication accuracy than did the ellipsoidal gaussians. Also, the RBF network with 100

gaussians out-performed the RBF network with 20 gaussians. As before, networks

using the K-means algorithm provided better classification accuracy than networks

using the hard algorithm. The best classification accuracy on the test data was 87%.

A network with 100 spherical gaussians trained with a K-means algorithm provided

this result. In a previous experiment, a two-layer back-propagation network had

achieved a classification accuracy of only about 80.2% on the same data (7:9).

2.9.3 Phoneme Labeling using RBFs. For this experiment, the data consisted

of vowel tokens segmented from a set of 98 sentences spoken by a single male speaker.

The training set contained 758 tokens and the test set contained 759 tokens. There

were 20 classes of tokens. The speech was sampled and then analyzed by either a

Discrete Fourier Transform analysis or a 2 0 'h order linear predictor analysis. The

gaussians were placed with a Nodes at Data Points algorithm and the exemplar to

receive the RBFs were selected at random. The RBFs' spreads were determined by

the P-nearest neighbor rule with P = 1 or 2 (9:463-464).
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The networks trained and tested with the speech analyzed with a linear pre-

dictor provided a slightly higher classification accuracy than the networks using the

Fourier analyzed speech. Also, the classification accuracy of the RBF networks im-

proved as the number of nodes was increased from 64 to 256. The best classification

accuracy achieved for the test vectors was 73.3% which compared favorably to the

best accuracy of a back-propagation network (73.0%). The RBF networks trained 2

to 3 times faster than did the back-propagation networks (9:464-465).

2.10 Conclusion

The classification of spread spectrum signal using ANNs is a very promising

area of research. The desirability of defeating spread spectrum makes this research

quite important. This importance as well as the successful results from previous

research in the area mandate additional research efforts into the classification of

spread spectrum signals using neural networks.
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III. Methodology

3.1 Introduction

This chapter will provide the details of how the experiments of this thcsis will

be performed. First, the resources needed to conduct the research will be discussed.

Then, the notation to be used in the rest of this document will be introduced. Finally,

the design for each experiment will be detailed. Although all experiments will be

introduced in this chapter before any results are reported in Chapter 4, results from

previous runs did affect the design of subsequent runs in several cases.

3.2 Resources

This section will cover the resources used to perform the experiments of this

thesis effort. These resources include the spread spectrum correlation signature data

files, the ANN simulator software, and other software used to prepare the correlation

signatures for presentation to the ANNs.

3.2.1 Spread Spectrum Correlation Signatures. The Harry Diamond Labo-

ratories (HDL), sponsor of this thesis, provided the spread spectrum correlation

signatures used to perform the experiments in this thesis. The signatures included

four classes or types of spread spectrum signals: direct sequence (DS), frequency

hopped stepped across frequency ranges by a linear stepper (LSFH), frequency

hopped driven by a pseudo-random code (R.DFH), and a combination of direct se-

quence and randoily-driven frequency hopped (HYB). Variations of each type of

spread spectrum signal were simulated by varying parameters such as chip rate,

hopping rate, pseudo-random code, etc. The signals werc then fcd into an acousto-

optic correlator. The outputs of the correlator (correlation signatures) used for this

thesis effort consisted of 1,000 data points in an ASCII file. Some of these files were
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transmitted from HDL to an AFIT computer via MILNET using the file transfer

protocol (FTP). The rest of the files were copied onto disks and mailed to AFIT.

3.2.2 ANN Simulator Software. The ANN simulator software was developed

by D. Zahirniak (17). The software is written in the ANSI-C language and will be

run on SUN 3 workstations. The software allows the user to choose from several

types of radial basis function (RBF) networks and three types of back-propagation

networks. Many of the available network algorithms and rules were described in

Chapter 2. The user selects the type of network and specifies the run parameters

from a menu file as shown in Appendix B. The results of the network execution arc

written to a file named by the user. The type of network chosen, the parameters

specified, the percent correct classification, and the misclassified vectors can be found

in this output file. In addition, a training and test history file detailing the network

performance at every 1,000 iterations is created for back-propagation networks. An

example of an output file and a history file can also be found in Appendix B.

3.2.3 Data Set Construction. The first step in this research effort was to

transform the received correlation signatures into a form acceptable by the ANN

simulator software. The received data files consisted of two columns of 1, 000 num-

bers. The left column -ontained the sample numbers (1 to 1, 000) while the right

column contained the actual sampled data. These files were imported into LOTUS

1-2-3 tm where the left columns were deleted. The remaining data column was printed

in an unformatted (to avoid page breaks) manner to files. These 1,000 point data

files were imported into a software package called DADiSP Worksheetm where they

were reduced to 500 points by averaging consecutive data point pairs. The peak

of each 500 point signal was identified and 50 points around this peak were ex-

tracted. The 50 point signals were then normalized to values between +1 and -1.

These normalized signals were written to files in the form of 50 ASCII numbers. A

QuickBASIC"m program converted these files into the exact format required by the
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ANN simulator software. Specific details of the data set construction can be found

in Appendix B.

3.3 Notation and Definitions

The following tcrms and dcfinitions will be used in thc rcmaindcr of this doc

ument:

class 1: Direct Sequence (DS) vectors

class 2: Linear Stepped Frequency Hopped (LSFH) vectors

class 3: Randomly Driven Frequency Hopped (RDFH) vectors

class 4: Hybrid (HYB) vectors

"good" classification: This classification criterium forces the network to choose one

of the training classes foi a given input. If the network's outputs for a given

input were 0.45 for the class 1 output and 0.5 for the class 2 output, the network

would choose class 2. All training and test percentages reported in this thesis

are based on the "good" classification metric except the training history plots

and tables for the back-propagation networks.

"right" classification: This criterium does not force the ANN to choose one of

the training classes for a given input. For the ANN simulator software used

for this thesis, the "right" metric requires a back-propagation network output

to be 0.9 or higher for the network to choose the class represented by that

output. The training history plots and tables reported in Chapter 4 for the

back-propagation networks are based on the "right" classification metric. This

metric is used during network training to force the ANN to learn the training

data much closer than if the -good" metric was employed. The classification

accuracy on the test vectors should be higher when the networks learn the

training vectors closer.
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P(good): The performance criteria used for the ANNs in this thesis is the proba-

bility of "good" classification on the test vectors. If a network yields a correct

"good" classification for 75 of 100 test vectors, then the measured P(good) =

0.75.

P(1 I 1): The probability of corrcctly clazsifying a class 1 tcst vcctor. If a network

yields a correct "good" classification for 30 of 50 class 1 test vectors, then

P(111) = 0.60.

P(2 1 1): The probability of incorrectly classifying a class 1 test vector as a class 2

vector. P(2 11) = 1 - P(1 I 1).

Run: A Run is distinguish from others runs by the make-up of the training and test

vectors. The number of classes or the amount of control over wh:ch vectors

are training and test exemplars are examples of ,iharacteristics that distii.guish

one run from another. The various Runs or data configurations used for the

experiments in this thesis will be explained later in this chapter.

RI: The acronym for Run 1.

CA: The acronym for a RBF network using the Center at Class Averages training

algorithm.

DP: The acronym for a RBF network using the Nodes at Data Points training

algorithm.

R1CA: The acronym representing an RBF network using the Center at Class Av-

erages training algorithm trained and tested with vectors of the Run 1 config-

uration.

R2DP: The acronym representing an RBF network using the Nodes at Data Points

training algorithm trained and tested with vectors of the Run 2 configuration.

MSE: Earlier defined as the acronym for Mean Squared Error. It will also be used

as an acronym for back-propagation networks using the Mean Squared Error

weight and threshold update rules.
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Figure 3.1. Diagram of a Majority Vote Network

CE: Earlier defined as the acronym for Cross Entropy. It will also be used as an

acronym for back-propagation networks using the Cross Entropy weight and

threshold update rules.

CFM: Earlier defined as the acronym for Classification Figure of Merit. It will also

be used as an acronym for back-propagation networks using the Classification

Figure of Merit weight and threshold update rules.

R3MSE: The Mean Squared Error weight and threshold update rules were used for

a back-propagation network trained and tested with vectors of the R3 config-

uration.

R4CE: Th, cross Entropy weight and threshold update rules were used for a back-

propagation network trained and tested with vectors of the R4 configuration.

Majority Vote: For this thesis, majority vote will mean that the output of back-

propagation networks using each of the three objective functions (MSE, CE,

CFM) will be arbitrated as shown in Figure 3.1. If cv or more of the three

networks correctly ,!assify a given input test vector, then the majority vote

network will also correctly classify the given input vector.
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MV: The acronym for the majority vote networks.

R3MV: The acronym representing a majority vote of the three types of back-

propagation networks all of which were trained and tested with vectors of the

R3 conxfguration.

The parameters that must be set for the RBF networks are as follows:

Nodes in Hidden Layer: For Nodes at Data Points networks, this must be selected.

In general, placing a node or RBF at each training vector yields the best results.

For Center at Class Averages networks, the number of nodes or RBFs used will

be be allocated based on another parameter, the Average Threshold.

Average Threshold: This parameter sets the distance, between a presented input

vector and the centers of the existing RBFs, required for creation of a new RBF

or Cluster. The Average Threshold is only set for Center at Class Averages

networks.

Sigma Threshold: This parameter sets the initial spreads of the RBFs or gaussians

for both the Center at Class Averages networks and the Nodes at Data Points

networks.

Output Threshold: This parameter sets the value of an existing gaussian or RBF

that a presented input vector would have to reach for a new RBF to be created

for a Nodes at Data Points network. For all experiments in this thesis, the

Output Threshold will be set to 1, the peak of the gaussians, in order to assure

a node or RBF will be centered at each training vector data point.

Sigma Factor: This parameter determines the amount by which the RBF spreads

can be adjusted during training of networks using the Sigma Rule of Scale

Sigmas by Constants.

Interference Threshold: This parameter is set to the amount of over! lp of gaussians

or RBFs that is required to cause a reduction in the spread of the gaussians.
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The parameters that must be set for all three types of back-propagation networks

to be used in this thesis are as follows:

Momentum: This parameter helps to control the rate at which a network converges.

Although not shown in the objective function update rules of Section 2.5, a

momentum term was implemented in the simulator software.

Iterations: This parameter is used to control the number of times that tle training

data set will be presented to the network.

Eta: This parameter is the learning rate, n, used in all weight and node bias update

equations of Section 2.5.

The parameters that must be set for the MSE back-propagation networks are as

follows:

Delta: This parameter controls the allowable difference between the desired correct

output "1" and the actual value of that output during training. If this value

is set to 0.1, the output node for the correct class must reach 0.9 for training

to cease on that input training vector.

The parameters that must be set for the CE back-propagation networks are as fol-

lows:

Epsilon: This parameter controls the allowable difference between the desired cor-

rect output "1" and the actual value of that output during training. If this

Vle is set to 0.1, the output node for the correct class must reach 0.9 fir

training to cease on that input training vector.
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The parameters that must be set for the CFM back-propagation networks are as

follows:

Alpha: This is the sigmoid scaling parameter, a, used in the CFM update rules of

Section 2.5.6.

Beta: This is the discontinuity parameter, P3, used in the CFM update rules of

Section 2.5.6.

Zeta: This is the sigmoid lateral shift parameter, C, used in the CFM update rules

of Section 2.5.6.

Delta: This parameter controls the minimum difference between the correct node's

output value and all incorrect nodes' output values that should be achieved

during training of the network. For this thesis, th., parameter was set to 1 and

the CFM networks' training was controlled by a software modification forcing

the correct node to be a 0.9 or higher for the network' training history file to

report a vector as being correctly classified.

3.4 Presentation of Network Results

This section will cover the methods to be used for reporting the performance

of the networks used in Runs 1 through 4 of this thesis. One paragraph will cover

the training performance data and another will cover the test performance data that

will be reported in Chapter 4 of this thesis.

3.4.1 Training Performance. The training performance of the networks will

be reported, although this performance will not be the main criteria used to de-

termine the worth of the networks. For all networks, the P(good) achieved on the

training vectors and the number of hidden layer nodes used will be reported. For

the back-propagation networks, an average training performance curve will also be

presented. The training performance at each 1,000 iterations, taken from the history
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files generated by the simulator software, will be averaged for the set of networks

to yield the training performance curve. The data used to generate training perfor-

mance curves can be found in Appendix A.

3.4.2 Test Petformance. The classification performance achieved on the test

vectors by each type of network used for each run will be reported in the form of

a table of summary statistics. As several of the definitions in the previous section

suggest, the reported statistics will be in the form of probabilities. A previous

thesis effort (1) has shown that the P matrix is a valid and useful way of presenting

and evaluating an ANNs classification accuracy performance. Therefore, for each

set of networks trained and tested for Runs 1 through 4 of this thesis, the overall

probability of "good" classification (P(good)) and the conditional probabilities of

"good" classification (e.g. P(1 I 1)) will be reported. The individual networks'

classification performances from which the summary statistics were calculated can

be found in tables in Appendix A.

3.5 Experiment Design

This section will explain the experiments to be performed in this thesis effort.

This explanation will include the training and test vector set configuration used for

each run, the purpose of each run, the types of networks trained and tested in each

run, and the specific parameters selected for each network type. Table 3.1, located

at the end of this section, contains a summary of the set-ups for each run.

3.5.1 Run 1. For Run 1 networks, the data will be set-up identical to the

data in a run of the previous thesis effort in the area of classifying spread spectrum

correlation signature, with ANNs (1). The training data will consist of 102 vectors

and the test test data will consist of 100 vectors. For both the training and test

data sets, haf will be class 1 vector, and half class 2 vectors. Although the order of

training vector presentation will be ve.ied for each of the 30 networks to be trained,
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the same vectors will be used for training and testing of the networks in each case.

The data was selected for the training and test data sets based on a log file provided

along with the correlation signatures by HDL. In general, the data set selection

method used insures that each test vector is very similar to a training vector in

signal parameters other than class (e.g. chip rate, PN code used, step-size, and

step-width).

The purpose of Run 1 is to determine if RBF networks can be trained with a

combination of DS and LSFH spread spectrum correlation signatures. If the networks

can train on the data, the performance of the RBF ANNs will be compared to the

back-propagation (MSE update rules) networks trained and tested for a previous

AFIT thesis (1).

The networks to be trained for Run 1 will be two types of RBF networks.

These types are the Center at Class Averages and the Nodes at Data Points net-

works. These two types of networks were chosen based on pieliminary test results.

The Center at Class Averages network was chosen because it offered a good classi-

fication performance in a small amount of time and with a small number of RBFs.

The Nodes at Data Points network was chosen due to a classification performance

unbeatable by other RBF networks tested. Other training algorithms tried in prelim-

inary tests included the K-means and Kohonen algorithms. The K-means networks

could not match, with a similar number of nodes and training time, the Center at

Class Averages networks' classification accuracy. The Kohonen networks took many

times longer to train than did the Nodes at Data Points networks and provided a

lower classification accuracy.

There will be 30 Center at Class Averages networks and 30 Nodes at Data

Points networks trained and tested with the Run 1 data configuration. The reported

results for R1CA and R1DP will be the average and standard deviation of the clas-

sification accuracies of the individual networks. Both types of RBF networks will

be run with data seeds 1 through 30. These seeds control the randomization of the
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order of the vectors to presented to the ANNs. The selection of the specific parame-

ters for each type of network was also determined based on preliminary testing. The

parameters selected for the R1CA networks are as follows:

Average Threshold = 2
Sigma Threshold = 4

Output Layer Training = Matrix Inversion
Sigma Rule = Scale sigmas by a constant

Interference Threshold = 0.4
Sigma Factor = 0.1

The parameters for the R1DP networks are as follows:

Sigma Threshold = 4
Output Threshold = 1

Output Layer Training = Matrix Inversion
Sigma Rule = Scale sigmas by a constant

Interference Threshold = 0.4
Sigma Factor = 0.1

3.5.2 Run 2. For Run 2 networks, the data will also be configured in the

ianner as the data in a run of the previous thesis effort. The training data

will consist of 85 vectors of which 60% or 61 will be class 1 vectors and 40% or 35

will be class 2 vectors. The training data was generated by randomly removing 17

class 2 training vectors from the 51 class 2 vectors used in training for Run 1. Since

the output of 30 networks will again be averaged for Run 2, 30 different training

vector sets were created by randomly removing 17 class 2 vectors 30 times. The test

data will consist of the same 100 test vectors (50 from each class) that will be used

for Run 1.

There are two purposes for Run 2. One purpose is to determine the impact

that altering the ratio of the training vectors from the two classes will have on the

symmetry of the P matrix. Also, the performance of the RBF networks of Run 2

can be compared to the classification performance of the back- propagation networks

used in the previous thesis effort.
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There will be 30 Center at Class Averages and 30 Nodes at Data Points net-

works trained and tested with the Run 2 data configuration. The reported results

will be the average and standard deviation of the classificati-. performances of the

individual networks. The data seeds used will be 121 through 150. The specific

parameter choices for the R2CA and R2DP networks are identical to the choices for

the R1CA and R1DP networks respectively.

3.5.3 Run 3. For Run 3 networks, the vectors selected to be training vectors

and test vectors will be determined quite differently than the method used for the

previous two runs. The data for Run 3 will be randomized. Although the same 202

vectors will be used as in Run 1, each vector will be a test vector for some networks

and a training vector for some networks. From the 202 vectors (101 class 1 and 101

class 2), 51 class 1 and 51 class 2 vectors will be randomly selected as training vectors

for each individual network. The 100 not chosen to be training vectors will serve as

test vectors. The randomization or data seed will be changed for each network so

that the make-up of the training and test vectors will be different for each network

of a given type. The data selection method used for Run 3 should produce a more

realistic classification performance than the method used for Run 1 in which detailed

apriori knowledge was employed.

One purpose of Run 3 is to observe the networks' classification performances

using training and test data sets chosen in a random manner. These performances

will be compared with the classification performances achieved by the Run 1 networks

to identify differences in classification accuracies produced by networks trained and

tested with the different data set configurations. Also, as suggested by Waibel (15),

an arbitration scheme will be employed to take into account the outputs of the MSE,

CE) and CFMI networks for a single decision. Therefore, a set of all three types of

back-propagation networks (MSE, CE, CFM) will be trained with the Run 3 data

configuration for use in an arbitration scheme. The arbitration scheme will involve

taking a Majority Vote (MV) of the three networks' classifications to construct a
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MV classification network. The MV classification performance will be compared to

the performances of the three individual types of back-propagation networks.

For the RBF networks of Run 3, there will again be 30 Center at Class Averages

and 30 Nodes at Data Points networks trained and tested. The reported results will

be the average and standard deviation of the 30 individual networks. The data

seeds used will be 1 through 30. Based on preliminary testing, the specific network

parameters selected for R3CA and R3DP will once again be identical to the choices

for RICA and R1DP.

There will be 10 MSE back-propagation networks trained and tested with the

Run 3 data configuration. These networks will be trained with data seeds 1 through

10. The initial link weights and node thresholds will be set to different random

values for each of the 10 networks. The 10 R3MSE networks wili contain 18 first

layer hidden nodes and 10 second layer hidden nodes. The specific parameters chosen

for the networks are as follows:

Delta = 0.1
Momentum = 0.5

Eta = 0.3
Iterations = 50,000

For the majority vote scheme, 10 MSE, 10 CE, and 10 CFM networks will be

trained and tested. The network designators for these back-propagation ANNs will

be R3aMSE, R3aCE, and R3aCFM respectively. The 30 back-propagation networks

will have 18 first hidden layer nodes and 10 second hidden layer nodes. The reported

results will be the average and the standard deviation of the ten networks of each

type. The data seeds used will be I through 10 for each type of network. The

initial link weights and node thresholds will be set to the same random values for

each of the 30 networks to be used for the majority vote decision rule. To obtain

the majority vote classification performance, the MSE, CE, and CFM networks for

data seed 1 will be arbitrated, for data seed 2 will be arbitrated, etc. Therefore,
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the R3MV results will also be the average and standard deviation of 10 majority

vote networks. The specific parameters for each type of back-propagation network

were determined by preliminary testing. The parameters selected for the R3aMSE

networks are:

Delta = 0.1
Momentum = 0.1

Eta = 0.3
Iterations = 50,000

The parameters selected for the R3aCE networks are:

Epsilon = 0.05
Momentum = 0.05

Eta = 1.5
Iterations = 30, 000

The parameters selected for the R3aCFM networks are:

Alpha = 1.0
Beta = 4.0
Eta = 0.14

Zeta = 0.0
Delta = 1.0

Momentum = 0.1
Iterations = 50,000

3.5.4 Run 4. For Run 4 networks, the data will be configured in the same

manner as it was for Run 3. The only difference is the amount of data. The networks

for Run 4 will be trained and tested with a combination of four classes of vectors

instead of the two classes used in previous runs. There will be a total of 404 vectors

(101 from each class) of which 204 will be training vectors and 200 will be test

vectors. The vectors to be used for training each network will be randomly selected

as were the vectors of Run 3. The reported results will again be the average and

standard deviation for each set of network types.
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Figure 3.2. Run 4 Center at Class Averages - Seed 1

The purpose of Run 4- is to see if the networks will train on the four classes of

spread spectrum correlation signatures. If the networks will train on the data, then

the classification performance of the each type of network trained will be reported

and compared to the classification performance of other networks trained and tested

with the Run 4 data configuration.

For the RBF networks, preliminary testing was employed to determine the

RBF training algorithm to use and the network parameters to select for the four

class problem. Based on these tests, the Center at Class Averages networks with an

average threshold of 1 was chosen. Figure 3.2 illustrates the effect that varying the

average threshold can have on classification accuracy for the four class problem. The

data used to generate the figure can be found in Table A.17. The preliminary tests

showed that the networks would produce approximately 150 hidden layer nodes or

RBFs with the average thresholds set to 1.
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The network parameters chosen for the 30 Center at Class Averages networks are as

follows:

Average Threshold = 1
Sigma Threshold = 4

Output Layer Training = Matrix Inversion
Sigma Rule = Scale sigmas by a constant

Interference Threshold = 0.4
Sigma Factor = 0.1

There will be ten CE back-propagation networks trained and tested with the

Run 4 data configuration. The CE back-propagation networks with 24 first hidden

layer nodes and 12 second hidden layer nodes were chosen based on the the classi-

fication performances achieved in preliminary testing. The choice for the remaining

network parameters for the Run 4 CE networks are as follows:

Epsilon = 0.05
Momentum = 0.05

Eta = 1.5
Iterations = 50,000
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Table 3.1. Experiment Run Parameters

Run Designation
Parameter Ri R2 R3 R4
# of Nets
Trained 60 60 100 40

# of Classes 2 2 2 4
Randomly Selected
Training Exemplars No No Yes Yes
# oi' Training
Exemplars 102 85 102 204
Training Set Mix
class 1 > 50 % 60 % 50 % 25 %
class 2 > 50% 40 % 50 % 25 %
class 3-> 25 %
class 4-> 25 %
Identical
Training Sets Yes No Yes Yes
# of Test
Exemplars 100 100 100 200
Test Set percent
per class 50 % 50 % 50 % 25 %
Identical
Test Sets Yes Yes No No
Presentation
Order Variable Variable Variable Variable
Majority Vote
Networks No No Yes No
Distribution RICA R2CA R3CA R4CA
Nomenclatures R1DP R2DP R3DP R4CE

R3MSE
R3aMSE
R3aCE

R3aCFM
R3MV
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Table 3.2. Chip Rate Training Data Sets

# of Experiment Designation
Chip Rates Vectors CR1 CR2 CR3 CR4 CR5
1.0 MHz 33 16 10 11 18 00
1.5 MHz 24 12 10 00 00 18
2.0 MHz 11 06 10 00 00 00
2.5 MHz 22 11 10 00 18 18
3.0 MHz 11 06 10 11 00 00
Totals 101 51 50 22 36 36

3.5.5 Direct Sequence Chip Rate Experiments. If an ANN can be trained to

classify spread spectrum correlation signatures based on the technique used to spread

the signals, a next logical step would be to attempt to train ANNs to determine

other features of an adversary's spread spectrum signals. To this end, ANNs will

be -trained on the chip rate of the DS correlation signatures received from the HDL.

There will be 5 experiments or attempts to train the ANNs with various training

data set mixes. Table 3.2 shows the chip rates of the 101 available DS signatures as

well -as the number of training vectors of each chip rate that will be used to train

the 5 networks. All vectors not used for training the network of a given experiment

will be used as test vectors for that experiment.

Experiments CR1 and CR2 are obviously designed to see if the networks will

train on the five classes of chip rate. However, experiments CR3, CR4, and CR5 will

be used to report the networks' classification of vectors with chip rates not used in

training. If the networks can learn to classify based on the chip rates, a classification

pattern should develop in which test vectors with chip rates not used in training are

classified as having the nearest rate used in training. For example, a 3.0 MHz test

vector in Run CR5 would be classified as a 2.5 MHz vector since 2.5 MHz is the

closest rate used in training.

Based on previous runs' results and preliminary testing, the 5 experiments will

use Nodes at Data Points networks with an RBF centered at each training vector.
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Table 3.3. Chip Rate Networks Training Parameters

Network Experiment Designation
Parameters CR1 CR2 CR3 CR4 CR5
Sigma
Threshold 4.0 3.0 4.0 4.0 4.0
Output
Threshold 1.0 1.0 1.0 1.0 1.0
Interference
Threshold 0.3 0.3 0.3 0.5 0.3
Sigma
Factor 0.1 0.1 0.1 0.1 0.1

Matrix Inversion will be used for training the weights between the hidden and output

layers and Scale Sigmas by a Constant rule will be used to adjust the spreads of the

RBFs or gaussians. Table 3.3 shows the specific parameters chosen for the networks.

3.5.6 Frequency Hopped Hopping Rate Experiments. Another logical step in

the attempt to train ANNs to determine features of an adversary's spread spectrum

signals uould be to train the networks to classify the hopping rates of RDFII cor-

relation signatures. To this end, there will be 4 experiments or attempts to train

the ANNs on the hopping rates of the RDFH signatures obtained from the HDL.

Table 3.4 shows the hopping rates of the 173 available RDFH signatures as well as

the number of training vectors of each hopping rate that will be used to train the

networks. All vectors not used for training the network of a given experiment will

be used as test vectors for that experiment.

Experiments HR1 and HR2 are designed to see if the networks will train on the

8 cs...es of hopping rate. However, experiments HR3 and HR4 will be used to report

the networks' classification of vectors with hopping rates not used in training. If the

networks can learn to classify based on the hopping rates, a classification pattern

should develop in which test vectors with hopping rates not used in training are
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Table 3.4. Hopping Rate Training Data Sets

Hop Rates f# of Experiment Designation
(hops/sec) Vectors 11131 HR2 HR3 HR4

62.5000 27 14 11 18 00
46.8750 27 14 11 00 24
39.0625 15 08 11 00 00
31.2500 18 09 11 00 00
15.6250 21 11 11 00 00
7.8125 27 14 11 18 24
6.2500 20 10 11 00 00
2.3438 18 09 11 00 00
Totals 173 89 88 36 48

classified as having the nearest rate used in training. For example, a 6.25 hops/sec

test vector in Run CR3 would be classified as a 7.1825 hops/sec vector since 7.1825

hops/sec is the closest rate used in training.

Based on previous runs results and preliminary testing, the 4 experiments will

use Nodes at Data Points networks with an RBF centered at each training vector.

Matrix Inversion will be used for training the weights between the hidden and output

layers and Scale Sigmas by a Constant rule will be used to adjust the spreads of the

RBFs or gaussians. Table 3.5 shows the specific parameters chosen for the networks.
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Table 3.5. Hopping Rate Networks Training Parameters

Network Experiment Designation
Parameters HR1 HR2 HR3 HR4
Sigma
Threshold 4.0 4.0 4.0 4.0
Output
Threshold 1.0 1.0 1.0 1.0
Interference
Threshuld 0.2 0.6 0.3 0.95
Sigma
Factor 0.1 0.1 0.1 0.1

3.6 Conclusion

The results of the experiments described in this chapter can be found in Chap-

ter 4. The results will include the networks' classification statistics and the impact

of these statistics on the stated purpose of each experiment.
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IV. Results

4.1 Introduction

This chapter will contain the results of the experiments described in Chapter

3. For each type of network employed, the training and test performance will be

reported. An analysis of the networks results as it pertains to the stated purpose of

each run will also be included. As in the previous chapter, the networks' results will

be organized by runs or data configurations. All output summary statistics tables

presented in this chapter are excerpts of tables located in Appendix A.

4.2 Run 1 - Two Classes Controlled Data Sets

4.2.1 Training Performance. The networks for Run 1 successfully trained on

the selected training vectors. The training performances of both the Center at Class

Averages networks and the Nodes at Data Points networks can be found in Table 4.1.

The number of nodes or RBFs match the number of training exemplars for the Nodes,

at Data Points networks while the number of nodes for the Center at Class Averages

networks were determined by the networks based on the selected Average Threshold

of 2. The Center at Class Averages networks trained in about 5 minutes CPU time

and the Nodes at Data Points networks trained in about 15 minutes CPU time.

Table 4.1. Training Statistics for Run 1 Networks

Run # of
ID Statistic Nodes P(good)

R ICA Mean 34.53 0.9229
STD 2.29 0.0158

I PDP Mean 102.00 1.0000
STD 0.00 00000
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Table 4.2. Output Summary Statistics for Distributions of Run 1

Run
ID Statistic P(1I 1) P(2 12) P(good)

RICA Mean 0.8347 0.9253 0.8800
STD 0.0360 0.0216 0.0241

R1DP Mean 0.9000 0.9400 0.9200
STD 0.0000 0.0000 0.0000

R1MSE* Mean 0.7380 0.9213 0.8297
STD 0.0384 0.0560 0.0374

* Trained in a previous thesis effort

4.2.2 Classification Accuracy on Test IVectors. The classification accuracy

the Run 1 networks achieved on the test vectors is shown in Table 4.2. While

the Center at Class Averages classification accuracy is based on the average of 30

networks, the Nodes at Data Points is iased on just 5 networks since the first 5 Nodes

at Data Points networks (Data Seeds 1 tilrough 5) performed identically. The MSE

classification performance also shown in Table 4.2 is the result of 30 back-propagation

aetworks trained using the MSE update rules.

4.2.3 Run 1 Summary. The results of the Run 1 networks show that RBF

networks will train on a combination of DS and LSFH spread spectrum correlation

signatures. The best classification performance was achieved using Nodes at Data

Points networks with a hidden layer node ur RBF placed at each of the 102 training

,ectors. The classification accuracy is identical from network to network when a node

is placed at each data point. The 30 Certer at Class Averages networks achieved a

average classification accuracy 4% lower than the Nodes at Data Points networks.

However, the Center at Class Averages networks trained in about one-third th.- time

req.uired to train , he Nodcs at Data Poits networ. Als at Datane ,o,. . Aso, the Nodes tDt

Points networks utilizrd approximately three times as many hidden layer nodes as

did the Center at Class Averages networks. Therefore, in this case, a trade-off exists
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between increased training time and number of nodes on one hand and a decreased

classification accuracy on the other hand.

The MSE back-propagation networks average classification accuracy on the

test data was more than 5% lower than the Center at Clabs Averages RBF networks

classification accuracy and more than 9% lower than the Nodes at Data Points RBF

networks classification accuracy. A majority of the classification accuracy difference

can be traced to the differences in classification accuracies on the class 1 DS sig-

natures. Although no training time is available for the MSE networks, literature

states that the training time for RBF networks is generally less than the training

time for back-propagation networks (4) (5). Even if the training times were equal,

the classification accuracy alone forces the conclusion that the RBF networks offer

a substantial improvement over the MSE back-propagation networks for classifying

the DS and LSFH spread spectrum correlation signatures as configured for Run 1 of

this thesis.

4.3 Run 2 - 60/0o Training Class Mix

4.3.1 Training Performance. The training performances of the Center at

Class Averages networks and the Nodes at Data Points networks are shown in Ta-

ble 4.3. Since the number of nodes required f.ir both types of networks were less for

Run 2 than for Run 1, the training time required for both types of RBF networks

was slightly less than the training times rcquired for the same network types of Run

1. The Nodes at Data Point networks still required more than twice as long to train

as did the Center at Class Averages networks.

4.3.2 Olassifi cation Accuracy on Test Vectors. The classification accuracy on
test vectors achieved ; Run 2 is shown ;n Ta!)je A.. The classification accuracics

presented for both types of RBF networks are based on the average of 30 networks.
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Table 4.3. Training Statistics for Run 2 Networks

Run # of
ID Statistic Nodes P(good)

R2CA Mean 32.27 0.9341
STD 1.46 0.0235

R2DP Mean 85.00 1.0000
STD 0.00 0.0000

The MSE classification performance also shown in Table 4.4 is the result of 30 back-

propagation networks trained using the MSE update rules.

Table 4.4. Output Summary Statistics for Distributions of Rihn 2

Run
ID Statistic P(1 11) P(2 12) P(good)

R2CA Mean 0.8820 0.8273 0.8547
STD 0.0384 0.0502 0.0300

R2DP Mean 0.9220 0.8727 0.8973
STD 0.0206 0.0384 0.0220

R2MSE* Mean 0.7767 0.8320 0.8043
STD 0.0485 0.0560 0.0370

* Trained in a previous thesis effort

4.3.3 Run 2 Summary. The results of the Run 2 networks show that the

Nodes at Data Points networks again achieved about a 4% better classification ac-

curacy on the test vectors than did the Center at Class Averages networks. This

accuracy difference is consistent with the results of Run 1. Also, as in Run 1, the

Nodes at Data Points networks required more time to train and used more hidden

layer nodes than did the Center at Class Averages networks. The RBF networks

again achieved a substantially higher classification accuracy than did the MSE back-

propagation networks for the DS and LSFH data as configured for Run 2. As ex-
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pected, the overall classification accuracy decreased for all three types of networks

due to the removal of the 17 training vectors for each network.

The P matrix conditional probabilities were greatly changed by shifting the

training data set class mix from 50% class 1 and 50% class 2 in Run 1 to 60% class

1 and 40% class 2 in Run 2. Table 4.5 contains the average conditional and overall

probabilities achieved using Run 1 and 2 networks. All three types of ANNs produced

a P matrix in Run 1 skewed in favor of P(2 I 2). For Run 2, the RBF networks

(R2CA and R2DP) produced P matrices skewed in favor of P(1 1) while the MSE

back-propagation networks produced a P matrix still skewed in favor of P(2 1 2).

Before the training classes were shifted in favor of class 1, the MSE matrix for Run

1 contained a difference in conditional probabilities (P(2 1 2) - P(1 11)) more than

twice as high as the differences of either type of RBF networks. This factor accounts

for the difference in skew directions produced by the Run 2 networks. The results of

Run 2 show that the P matrix symmetry can be controlled by adjusting the class mix

of the training vectors for RBF networks as well as for the MSE back-propagation

networks.

Table 4.5. Average Probability Matrices of Runs 1 and 2

Run
ID Statistic P(1 I1) P(2 12) P(good)

RICA Mean 0.8347 0.9253 0.8800
R2CA Mean 0.8820 0.8273 0.8547
R1DP Mean 0.9000 0.9400 0.9200
R2DP Mean 0.9220 0.8727 0.8973

R1MSE* Mean 0.7380 0.9213 0.8297
R2MSE* Mean 0.7767 0.8320 0.8043
* Trained in a previous thesis effort
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Table 4.6. Training Statistics for Run 3 Networks

Run #of
ID Statistic Nodes P(good)

R3CA Mean 30.57 0.9267
STD 2.65 0.0313

R3DP Mean 102.00 0.9993
STD 0.00 0.3774

R3MSE Mean 18- 10 1.0000
STD 0.00 0.0000

R3aMSE Mean 18 - 10 1.0000
STD 0.00 0.0000

R3aCE Mean 18 - 10 1.0000
STD 0.00 0.0000

R3aCFM Mean 18 - 10 0.8932
STD 0.00 0.0575

4.4 Run 3 - Two Classes Randomly Selected Data Sets

4.4.1 Training Performance. The training statistics for the two Run 3 RBF

networks (R3CA and R3DP) and the four Run 3 back-propagation networks (R3MSE,

R3aMSE, R3aCE, and R3aCFM) are shown in Tab__ 4.6.

For Run 3, the 30 Center at Class Averages k, F networks successfully trained

on the randomly selected DS and LSFH signatures, but three of the 30 Nodes at

Data Points networks would not train on the vectors selected based on the data

seeds. For the three seeds, two or more selected training vector data points used to

center the RBFs were too similar to use the Matrix Inversion algorithm for output

layer training of the network. The training data sets forced the matrices used in

the algorithm to become singular or near-singular which prevented the output layer

training. Therefore, the training and test statistics provided for the Nodes at Data

PO ointc works are based only on the 27 networks that did tain. In Section 1-.3.3)

alternatives to the Nodes at Data Points Matrix Inversion problem will be discussed.

As in Run 1, the Center at Class Averages networks trained in approximately 5
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Figure 4.1. Run R3MSE Training Performance

minutes CPU time and the Nodes at Data Points networks trained in about 15

minutes CPU time.

For the four sets of back-propagation networks trained, the P(good) achieved

on the training data is shown in Table 4.6. Also, plots of the training performances

per 1,000 iterations are shown in Figures 4.1, 4.2, 4.3, and 4.4. The training plots

are based on the "right" classification metric. The data from which the plots were

produced can be found in Appendix A. The plots show that the R3aCE networks

gnerally trained or converged in less iterations (about 10, 000) than did the other

sets of back-propagation networks. If training was terminated at 10, 000 iterations,

the R3aCE networks would train faster than the other networks. However, at 10, 000

iterations, the CE networks would still require approximately an hour CPU time to

train.
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Figure 4.4. Run R3aCFM Training Performance

4.4.2 Classification Accuracy on Test Vectors. The average classification ac-

curacy that the Run 3 networks achieved on the test vectors is shown in Table 4.7.

The back-propagation networks' results are based on 10 networks each while the

RBF networks' results are based on 30 and 27 networks as described in the previ-

ous section. The R3aMSE, R3aCE, and R3aCFM test vector classifications were

arbitrated to produce the R3MV classifications.

4.4.3 Nodes at Data Points Training Failure Alternatives. Due to the fact

that 3 out of 30 Nodes at Data Points networks would not train with the Run 3 data

configuration, several possible methods for handling the problem will be introduced.

The Nodes at Data Points networks, with a node or RBF centered at each data

point, has provided the best classification accuracy for Runs 1 through 3. Therefore,

work-arounds to the problem should focus on achieving a classification accuracy as

close as possible to that achieved by the Nodes at Data Points networks.
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Table 4.7. Output Summary Statistics for Distributions of Run 3

Run
ID Statistic P(1 11) P(2 12) P(good)

R3CA Mean 0.8793 0.7567 0.8180
STD 0.0680 0.0693 0.0400

R3DP Mean 0.8807 0.8459 0.8633
STD 0.0629 0.0546 0.0416

R3MSE Mean 0.7760 0.8160 0.7960
1 STD 0.0974 0.0587 0.0564

R3aMSE Mean 0.8120 0.8240 0.8180
STD 0.0895 0.0409 0.0522

R3aCE Mean 0.8200 0.8040 0.8120
STD 0.0869 0.0479 0.0479

R3aCFM Mean 0.7720 0.6920 0.7320
STD 0.1412 0.1455 0.0836

R3MV Mean 0.8200 0.8020 0.8110
L STD 0.0827 0.0485 0.0504

Since only 3 of the 30 Nodes at Data Points networks did not train, a simple

solution to the training failures can be found. The solution is to change the data

seed and run another Nodes at Data Points network. The classification accuracy of

the Nodes at Data Points networks would be achieved at the expense of increasing

the training time. Since the Nodes at Data Points networks train approximately 4

times faster than any of the back-propagation networks, the classification accuracy

and the training time advantage of the Nodes at Data Points networks over the back-

propagation networks would almost certainly be preserved. Although this solution

would work for this specific case, it would probably not be practical in the event of

an actual deployment of a ANN.

A more general solution to the problem would be to substitute an RBF cluster-

ing training algorithm such as the Center at Class Averages or K-means algorithms

for the Nodes at Data Points algorithm. Although the Center at Class Averages

networks for Runs 1 through 3 of this thesis have been trained using substantially
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Figure 4.5. Run 3 Center at Class Averages - Seed 6

less nodes than the Nodes at Data Points networks, the average threshold can be

adjusted to increase both the number of nodes or RBFs used and the classification

accuracy. Figure 4.5 illustrates the effect on the classification accuracy when the

average threshold is adjusted. This figure was produced with the Run 3 data config-

uration and all network parameters, except for the average threshold, set identical to

parameters of the 30 Center at Class Averages networks trained for Run 3. With an

average threshold of 0.05, the Center at Class Averages produces a P(good) of 0.89

which is the same as the Nodes as Data Points produced with the same data seed.

The Center at Class Averages network generated 90 nodes or RBFs. The clustering

method of the Center at Class Averages algorithm would force any training data

points similar enough to prevent network training into the same cluster. Thercfore.

this algorithm should worl for all seeds.

4.4.4 Run 3 Summary. The results of Run 3 again showed that the Nodes

at Data Points networks (excluding the three that would not train) produced the

4-11



best classification accuracy of the networks trained. The Center at Class Averages,

MSE, and CE networks produced classification accuracies of about 80% or about 5%

lower than the Nodes at Data Points accuracy. For the Run 3 data configuration,

the CFM produced a low classification accuracy as compared to the other types of

networks.

The differences in the overall classification accuracy and the conditional prob-

abilities between the Run 3 RBF networks and the Run 1 RBF networks are sig-

nificant. The Nodes at Data Points networks and the Center at Class Averages

networks of Run 3 produced overall classification accuracies of about 6% lower than

the same types of networks had produced in Run 1. The MSE back-propagation net-

works produced similar classification accuracies for the data configurations of Runs

1 and 3. For the RBF networks, the Run 1 data configuration proved to contain test

vectors significantly better represented by training data than did the Run 3 data

configuration. Since the Run 1 data sets were selected to contain test vectors with

similar parameters (e.g. chip rate) to the training vectors, the difference in classica-

tion accuracies achieved using the RBF networks in Runs 1 and 3 suggest that these

networks may be useful in classifying signal parameters other than class. Also, the

Run 3 networks produced P matrices that were either skewed in favor of P(1 I 1) or

very nearly symmetric whereas the Run 1 P matrices were heavily skewed in favor

of P(2 1 2). The P matrix differences serves as further evidence that the Run 1 data

set configuration originally used in the previous thesis effort is very different from

the data sets produced when training and test vectors were randomly selected from

the pool of 202 DS and LSFH vectors.

Finally, the classification accuracy produced by the majority vote networks

showed no classification accuracy advantage over the MSE and CE networks used in

the majority vote scheme. Although the majority vote arbitration scheme is different

from the arbitration scheme used for the phoneme recognition problem reviewed

in Section 2.7.4, the majority vote scheme may have also produced classification
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accuracy improvement over the individual network types under two conditions: the

CFM networks classification performance on the Run 3 data configuration had been

higher and the three types of networks had produced more disjoint misclassified test

vector sets. For the phoneme classification problem, the CFM networks produced a

slightly higher classification accuracy than did the MSE or CE networks and the three

objective functions produced largely disjoint misclassified data sets (15). For the

Run 3 data configuration of this thesis, the CFM networks produced a classification

accuracy substantially lower than did the MSE and CE networks and the misclassified

vector sets of the MSE and CE networks were very similar.

4.5 Run 4 - Four Classes Randomly Selected Data Sets

The training statistics for the Run 4 Center at Class Averages networks and

the CE back-propagation networks are shown in Table 4.8. The 30 Center at Class

Averages networks 3sed an average of almost 150 nodes or RBFs and trained in under

30 minutes CPU time. The 10 CE networks were each trained for 50,000 iterations

which took approximately 5 hours CPU time per network. Figure 4.6 is a plot of the

average training performance of the Run 4 CE networks at each 1,000 iterations.

The CE networks did not train to a steady state despite numerous runs with various

networks parameters in an unsuccessful attempt to achieve such a state. Several

of CE networks with the parameters as chosen for Run 4 were trained to 100, 000

iterations. Despite doubling the training time, the networks had still not converged

to a steady stdte and the classification accuracy on the test vectors decreased slightly

over the additional iterations.
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Table 4.8. Training Statistics for Run 4 Networks

Run #of
ID Statistic Nodes P(good)

R4CA Mean 146.40 1.0000
STD 4.33 0.0000

R4CE Mean 24- 12 0.9951
STD 0.00 0.0061
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Figure 4.6. Run 4 CE Training Performance
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4.5.1 Classification Accuracy on Test Vectors for Run 4. The average classi-

fication accuracy on the test vectors produced by the Center at Class Averages RIBF

networks and the CE back-propagation networks can be found in Table 4.9. The 12

conditional probabilities of misclassification of the test vectors and the individual

networks' classification statistics can be found in Appendix A.

Table 4.9. Output Summary Statistics for Distributions of Run 4

Run
ID Statistic P(1I) P(2 12) P(3 13) P(414) P(good)

R4CA Mean 0.7007 0.7760 0.8293 0.7720 0.7670
STD 0.0698 0.0701 0.0498 0.0854 0.0259

_4C_ Mean 0.6260 0.7040 0.6960 0.7500 0.6940
STD 0.0948 0.0595 0.0602 0.074 0.0360

4.5.2 Run 4 Summary. The results of Run 4 showed that the ANNs can

be trained to classify a combination of 4 classes of spread spectrum correlation

signatures (DS, LSFH, RDFH, and HYB). The Center at Class Averages networks

produced a classification accuracy more than 7% higher than did the CE networks.

The differences in accuracy and training time combine to show that the Center at

Class Averages clearly outperforms the CE networks for the classification of the Run

4 datasets. Both the Center at Class Averages and the CE networks produced a

lower overall classification accuracy for the Run 4 data configuration than for the

Run 3 data configuration. The addition of the class 3 and 4 vectors produced about

a 5% lower classification accuracy with the Center at Class Averages networks and

a more than 10% lower classification accuracy with the CE networks.
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4.6 Chip Rate Results.

4.6.1 Introduction. This section contains the classification results of the 5

DS Chip Rate experiments set up in Chapter 3. The tables in this section list the

chip rates of the vectors used for training in left most column with the chip rates

of the test vectors listed horizontally across the top. Each table reveals the number

te3t vectors of a given chip rate which were classified to each class or chip rate used

in training.

Table 4.10. CR1 Test Vector Classification Results

Training # used for Test Chip Rates(MHz)
Rates Training 1.0 1.5 2.0 2.5 3.0

1.0 MHz 16 3 2 1 0 0
1.5 MHz 12 7 9 2 2 0
2.0 MHz 06 1 1 0 0 0
2.5 MHz 11 0 0 2 4 5
3.0 MHz 06 1 0 0 5 0

Total Test Vectors 17 12 5 11 5

4.6.2 Chip Rate Classification Results. For Experiment CR1, about half of

the available vectors from each of the 5 chip rates were used for training and half

for testing. The overall classification accuracy was about 42% on the test vectors.

Although this classification accuracy is low, the misclassified test vectors tended to

be classified to a rate only 0.5 MHz different from the vectors' actual chip rate. The

1.5 MHz test vectors showed the best classification accuracy while none of the 2.0

and 3.0 MHz test vectors were correctly classified.
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Table 4.11. CR2 Test Vector Classification Rsults

Training # used for Test Chip Rates(MIz)
Rates Training 1.0 1.5 2.0 2.5 3,0

1.0 MHz 10 12 2 0 0 0
1.5 MhIz 10 7 6 0 0 0
2.0 MHz 10 2 3 0 1 0
2.5 MHz 10 0 2 1 6 0
3.0 MHz 10 2 1 0 5 1

Total Test Vectors 23 14 1 12 1

The network used in Experiment CR2 produced an overall classification accu-

racy of 49% on the test vectors. This network, trained with 10 vectors of each class,

Tzoduced results very similar to nework of Experiment 1.

Table 4.12. CR3 Test Vector Classification Results

Training # used for Test Chip Rates(MHz)
Rates Training 1.0 1.5 2.0 2.5 3.0

1.0 MHz 11 1I 11 0 0 0
3.0 MHz 11 9 13 11 22 0

Total Test Vectors 22 24 11 22 0

The network for Experiment CR3, trained with 2 classes and tested with 5

classes, produced some unexpected results. Although the 2.5 MHz test vectors were

classified as 3.0 MHz vectors as expected, the 1.0, 2.0, and 3.0 MHz test vector

classifications were all skewed more than expected toward the 3.0 MHz training

class.
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Table 4.13. CR4 Test Vector Classification Results

Training # used for Test Chip Rates(MHz)
Rates Training 1.0 1.5 2.0 2.5 3.0

1.0 MHz 18 10 13 0 0 0
2.5 MHz 18 5 11 11 4 11

Total Test Vectors 15 24 11 4 11

The network used for Experiment CR4 produced results very similar to those

produced in Experiment CR3. A high proportion of the test vectors from the lower

end of the 5 available chip rates were again classified as a chip rate from the upper

end of the available rates.

Table 4.14. CR5 Test Vector Classification Results

Training # used for Test Chip Rates(MHz)
Rates Training 1.0 1.5 2.0 2.5 3.0

1.5 MHz 18 24 1 4 1 0
2.5 MHz 18 9 5 7 3 11

Total Test Vectors 33 6 11 4 11

The Experiment CR5 network produced results in which the 1.0 and 3.0 MHz

test -ctors were generally classified to the nearest chip rate used for training. The

2.0 MHz test vectors classifications were split among the two nearest training class

rates that were both 0.5 MHz away. The only unexpected result was that 5 out 6 of

the 1.5 MHz test vectors were classified as 2.5 MHz vectors despite the fact that 1.5

MHz vectors were used in training.

.4.6.3 Chip Rate Experiments Summary. The classification results of the five

networks for the chip rate experiments did not approach the results achieved by

the ANNs on the spread spectrum technique classifications reported earlier in this

chapter. Neither five class problem achieved a classification accuracy of over 50%.

For the two class problems, a pattern developed in which the test vectors from the
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2.5 and 3.0 MHz classes responded as expected to training vectors of similar chip

rates. However, test vectors ("om the lower chip rates also were often classified as 2.5

and 3.0 MHz vectors. In general, the networks produced correct classifications for

some of the classes and the misclassified vectors from the five class problems tended

to be classified to a chip rate as close as possible to the correct rate. These two facts

suggest that further research using ANNs for classifying DS spread spectrum chip

rates from correlation signatures would be useful.

4.7 flopping Rate Experiment Results

4.7.1 Introduction. This section contains the classification results of the 4

RDFH Hopping Rate experiments set up in Chapter 3. The tables in this section

list the hopping rates of the vectors used for training in left most column with the

hopping rates of the test vectors listed horizontally across the top. These rates have

been rounded to the nearest tenth for presentation purposes. The table for each

experiment shows the number of test vectors of a given hopping rate which were

classified to a class or hopping rate used in training.

4.7.2 flopping Rate Classification Results. The network used for Experiment

HR1 produced an overall classification accuracy of about 30%. The misclassified

vectors were widely distributed among the incorrect classes.

The network used for Experiment HR2 show an overall classification accuracy

of under 26%.
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Table 4.15. HR1 Test Vector Classification Results

Training Test Hopping Rates (hops/sec)
Rates # used for

(hops/sec) Training 62.5 46.9 39.1 31.3 15.6 7.8 6.3 2.3
62.5 14 4 3 1 0 0 2 0 0
46.9 14 2 4 3 0 1 2 1 1
39.1 08 0 1 1 0 0 0 0 0
31.3 09 3 1 0 5 0 0 0 2
15.6 11 1 2 1 1 1 1 2 0
7.8 14 2 2 1 1 1 3 1 0
6.3 10 0 0 0 2 5 4 6 4
2.3 09 1 0 0 0 2 1 0 2
Total Test Vectors 13 13 7 9 10 13 10 9

Table 4.16. HR2 Test Vector Classification Results

Training Test Hopping Rates (hops/sec)
Rates # used for

(hops/sec) Training 62.5 46.9 39.1 31.3 15.6 7.8 6.3 2.3
62.5 11 4 1 0 0 2 3 1 0
46.9 11 2 1 0 0 1 0 1 1
39.1 11 3 6 3 0 1 5 0 0
31.3 11 2 0 0 5 1 3 0 1
15.6 11 1 1 0 1 2 2 3 1
7.8 11 3 3 1 0 0 2 0 0
6.3 11 1 2 0 0 0 1 3 2
2.3 11 0 2 0 1 3 0 1 2
Total Test Vectors 16 16 4 7 10 16 9 7
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Table 4.17. HR3 Test Vector Classification Results

Training Test Hopping Rates (hops/see)
Rates # used for

(hops/sec) Training 62.5 46.9 39.1 31.3 15.6 7.8 6.3 2.3
62.5 18 6 13 8 4 5 4 6 3
7.8 18 3 14 7 14 16 5 1415

Total Test Vectors 9 27 15 18 21 9 20 18

The Nodes at Data Points network used for Experiment HR3 classified the

test vectors from the five lowest hopping rates (2.3 hops/sec through 31.3 hops/sec)

as 7.8 hops/sec vectors about 75% of the time. For the other three classes of test

vectors closer to the 62.5 hops/sec training class, no pattern was observed.

Table 4.18. HR4 Test Vector Classification Results

Training Test Hopping Rates (hops/sec)
Rates # used for

(hops/sec) Training 62.5 46.9 39.1 31.3 15.6 7.8 6.3 2.3
46.9 24 12 3 8 3 8 0 5 2
7.8 24 15 0 7 15 13 3 15 16

Total Test Vectors 27 3 15 18 21 3 20 18

The results produced by the network used in Experiment HR4 showed that

switching the higher rate training vectors from 62.5 hops/sec to 46.9 hops/sec pro-

duced virtually the same classification results from the networks. The classifications

of test vectors with a hopping rate of 31.3 hops/sec were still skewed heavily to-

ward the 7.8 hops/sec training class despite having a hopping rate closer to the 46.9

hops/sec training class.

4. 7.3 Hopping Raie Experiments Summary. The classification accuracies pro-

duced by the networks trained with eight classes of hopping rates were much lower

than the accuracies that the ANNs had produced for previous classification problems
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in this chapter. For additional research to be warranted in the area of classifying the

hopping rate of RDFH spread spectrum signals from captured correlation signatures,

signatures other than the ones used in this thesis should be generated.

4.8 Conclusion

In this chapter, the results of the networks trained and tested for this thesis

were presented and discussed. Chapter 5 will state the conclusions and recommen-

dations for further research that can be drawn from the results in this chapter.
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V. Conclusions and Recommendations

5.1 Conclusions

5.1.1 Two Class Network Performance. Radial Basis Function (RBF) neural

networks can be trained directly on the correlation signatures of a selected combina-

tion of direct sequence (DS) and linearly-stepped frequency hopped (LSFH) sprcad

spectrum signals.

Nodes at Data Points networks with a node placed at each training vector

provided classification accuracies of about 90% for the test vectors as selected for

Runs 1 and 2 of this thesis. Center at Class Averages networks using significantly less

nodes and training time produced classification accuracies between 85% and 90% for

the same data. Back-propagation networks employing the mean-squared error had

achieved classification accuracies of about 80% for the same-data set configurations.

5.1.2 Controlling Probability Matrix Symmetry. The conditional classifica-

tion accuracies or probabilities produced by the Nodes at Data Point6 and the Center

at Class Averages networks can be controlled by adjusting the proportions of vector

classes in the training data set.

5.1.3 Data Set Selection Method Effects. Given the same vectors from which

to select training and test data sets, the method used to determine which vectors

will be used for training and testing the neural networks can greatly affect the clas-

sification accuracy produced by the networks.

For Run 3 of this thesis, the vectors to be used for training the individual

networks were selected at random from the pool of DS and LSFH signatures. Under

these conditions, the Nodes at Data Points RBF networks produced a classification

accuracy of about 86%. The Center at Class Averages RBF, MSE back-propagation,

and the CE back-propagation networks produced classification accuracies of about
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80%. The CFM back-propagation networks produced an accuracy of only about

73%. The accuracies produced by the RBF networks of Run 3 are about 6% lower

than the accuracies produced by the PBF networks of Run 1.

5.1.4 Majority Vote Results. A majority vote of the three type of back-

propagation networks (MSE, CE, and CFM) trained with the exact same DS and

LSFH correlation signatures did not produce a classification accuracy advantage over

the individual back-propagation networks.

For Run 3 of this thesis, a majority vote network decision as stated above was

produced from the classifications of the three types of back-propagation networks.

The classification accuracy produced by the majority vote arbitration scheme was

approximately equal to that produced by the MSE or CE networks alone.

5.1.5 Four Class Network Performance. A Center at Class Averages RBF

neural network and a CE back-propagation network can be trained directly on the

correlation signatures of a combination of four classes of spread sptectrum signals

(direct sequence (DS), linearly-stepped frequency hopped (LO3FH), rai.domly-driven

frequency hopped (RDFH) and a hybrid of DS and RDFH (HYB)). The Center at

Class Averages networks produced a classification accuracy of about 77% while the

CE networks produced an accuracy of near 70%.

5.1.6 Classification Accuracy. For the data configurations used in this thesis,

RB3F retworks were trained that consistently produced overall test vector classifica-

tion accuracies from 5% to 2.0% higher than the back-propagation networks trained

and tested with the same dat,.

5.1.7 Training Times. For the problem of classifying spread spectrum cor-

relation signatures with nmirai networks, RBF networks can be expected to train

in significa-. ., iess time than back-propagation networks. The time difference will
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depend on the training data sets used, the networks chosen, and the networks pa-

rameters selected.

5.1.8 Chip and Hopping Rate Networks Performance. The results were in-

conclusive concerning the use of ANNs for classifying the chip rate of DS and the

hopping rate of RDF1I spread spectrum signals from captured correlation signatures.

Although some of the chip rate and hopping rate experiment networks trained

for this thesis produced high classification accuracies for some training sets con-

taining tw'o rates, the classification performances of the networks were generally

unpredictable and unimpressive.

5.2 Recommendations

1. For future research involving the classification of spread spectrum signals using

ANNs, white gaussian noise should be added to the data used to train the

networks. The addition of noise would provide a more realistic test of the

ANNs performance.

2. Additional research should be performed to determine if ANNs can be used to

classify features of spread spectrum other than signal type. If future research

is to include further attempts to classify DS chip r-te or RDFH hopping rate,

additional correlation signatures should be obtained.

3. An attempt should be made to de' elop arbitrution -chtmeb that take advantage

of the differences in classifications produced by the various types of ANNs.

4. For future research, the training times of the networks should be reported due

to importance of training time for many applications.
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Appendix A. Data Tables

The following data tables were developed from the output of the various net-

works used in this thesis effort. The summary statistics tables of Chapter 4 are

taken from the probability matrix tables in this appendix. These tables include the

P(good) for each network as well as all conditional probabilities for each network.

The training history data used to produce the training history plots presented in

Chapter 4 are contained in this appendix. Finally, the data used to produce the two

Center at Class Averages versus Average Threshold plots are also contained in this

appendix.
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Table A.1. Probability Matrices for Run 1 Center at Class Averages

Net P(Z I1) P(2 11) P(1j2) P(2 12) P(good)

netl 0.84 0.16 0.10 0.90 0.87
net2 0.74 0.26 0.12 0.88 0.81
net3 0.84 0.16 0.06 0.94 0.89
net4 0.90 0.10 0.08 0.92 0.91
net5 0.82 0.18 0.08 0.92 0.87
net6 0.86 0.14 0.08 0.92 0.89
net7 0.86 0.14 0.10 0.90 0.88
net8 0.84 0.16 0.08 0.92 0.88
net9 0.82 0.18 0.06 0.94 0.88

netlO 0.82 0.18 0.10 0.90 0.86
netil 0.88 0.12 0.04 0.96 0.92
net12 0.88 0.12 0.04 0.96 0.92
netl3 0.84 0.16 0.06 0.94 0.89
netl4 0.88 0.12 0.08 0.92 0.90
netl5 0.86 0.14 0.06 0.94 0.90
netl6 0.80 0.20 0.06 0.94 0.87
netl7 0.86 0.14 0.10 0.90 0.88
netl8 0.84 0.16 0.04 0.96 0.90
netl9 0.82 0.18 0.06 0.94 0.88
net20 0.84 0.16 0.04 0.96 0.90
net2l 0.84 0.16 0.10 0.90 0.87
net22 0.82 0.18 0.08 0.92 0.87
net23 0.82 0.18 0.10 0.90 0.86
net24 0.78 0.22 0.06 0.94 0.86
net25 0.74 0.26 0.10 0.90 0.82
net26 0.82 0.18 0.08 0.92 0.87
net27 0.84 0.16 0.08 0.92 0.88
net28 0.84 0.16 0.08 0.92 0.88
net29 0.86 0.14 0.06 0.94 0.90
net30 0.84 0.16 0.06 0.94 0.89
Mean 0.8347 0.1653 0.0747 0.9253 0.8800
STD 0.0360 0.0360 0.0216 0.0216 0.0241
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Table A.2. Probability Matrices for Run 1 Nodes at Data Points

Net P(I 11) P(21 1) P(112) P(2 12) P(good)

netl 0.90 0.J0 0.06 0.94 0.92
net2 0.90 0.10 0.06 0.94 0.92
net3 0.90 0.i0 0.06 0.94 0.92
net4 0.90 0.10 0.06 0.94 0.92
net,5 0.90 0.10 0.06 0.94 0.92

Mean 0.90 0.10 0.06 0.94 0.92
STD 0.90 0.00 0.00 0.00 0.00
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Table A.3. Probability Matrices for Run 2 Center at Class Averages

Net P(l 11) P(2 11) P(1 2) P(2 12) P(good)

netl 0.90 0.10 0.10 0.90 0.90
net2 0.92 0.08 0.20 0.80 0.86
net3 0.82 0.18 0.14 0.86 0.84
net4 0.90 0.10 0.22 0.78 0.84
net5 0.84 0.16 0.12 0.88 0.86
net6 0.92 0.08 0.20 0.80 0.86
net7 0.84 0.16 0.28 0.72 0.78
net8 0.94 0.06 0.20 0.80 0.87
net9 0.90 0.10 0.12 0.88 0.89
net1O 0.92 0.08 0.20 0.80 0.86
netli 0.88 0.12 0.16 0.84 0.86
netl2 0.86 0.14 0.24 0.76 0.81
netl3 0.84 0.16 0.20 0.80 0.82
net14 0.84 0.16 0.24 0.76 0.80
netI5 0.86 0.14 0.18 0.82 0.84
net16 0.94 0.06 0.22 0.78 0.86
netl7 0.84 0.16 0.18 0.82 0.83
netl8 0.92 0.08 0.10 0.90 0.91
netl9 0.84 0.16 0.08 0.92 0.88
net20 0.90 0.10 0.24 0.76 0.83
net2l 0.90 0.10 0.12 0.88 0.89
net22 0.88 0.12 0.16 0.84 0.86
net.23 0.94 0.06 0.20 0.80 0.87
net24 0.90 0.10 0.12 0.88 0.89
net25 0.90 0.10 0.16 0.84 0.87
net26 0.82 0.18 0.12 0.88 0.85
net27 0.92 0.08 0.14 0.86 0.89
net28 0.82 0.18 0.14 0.86 0.84
net29 0.88 0.12 0.18 0.82 0.85
net30 0.88 0.12 0.22 0.78 0.83
Mean 0.8820 0.1180 0.1727 0.8273 0.8547
STD 0.0384 0.0384 0.0502 0.0502 0.0300
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Table A.4. Probability Matrices for Run 2 Nodes at Data Points

Net P(1 11) P(2 11) P(1 2) P(2 12) P(good)

netl 0.90 0.10 0.10 0.90 0.90
net2 0.92 0.08 0.14 0.86 0.89
net3 0.92 0.08 0.14 0.86 0.89
net4 0.92 0.08 0.18 0.82 0.87
net5 0.92 0.08 0.10 0.90 0.91
net6 0.92 0.08 0.14 0.86 0.89
nt 7 0.90 0.10 0.20 0.80 0.85
net8 0.96 0.04 0.14 0.86 0.91
net9 0.92 0.08 0.10 0.90 0.91

netlO 0.94 0.06 0.12 0.88 0.91
netil 0.94 0.06 0.14 0.86 0.90
netl2 0.90 0.10 0.14 0.86 0.88
netl3 0.94 0.06 0.18 0.82 0.88
netl4 0.92 0.08 0.08 0.92 0.92
neti5 0.92 0.08 0.10 0.90 0.91
netl6 0.92 0.08 0.10 0.90 0.91
netl7 0.90 0.10 0.12 0.88 0.89
netl8 0.92 0.08 0.10 0.90 0.91
netl9 0.92 0.08 0.06 0.94 0.93
net20 0.90 0.10 0.20 0.80 0.85
net2l 0.94 0.06 0.08 0.92 0.93
net22 0.90 0.10 0.08 0.92 0.91
net23 0.98 0.02 0.16 0.84 0.91
net24 0.92 0.08 0.12 0.88 0.90
net25 0.96 0.04 0.14 0.86 0.91
net26 0.92 0.08 0.12 0.88 0.90
net27 0.92 0.08 0.10 0.90 0.91
net28 0.88 0.12 0.18 0.82 0.85
net29 0.92 0.08 0.08 0.92 0.92
net30 0.92 0.08 0.18 0.82 0.87
Mean 0.9220 0.0780 0.1273 0.8727 0.8973
STD 0.0206 0.0206 0.0384 0.0384 0.0220
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Table A.5. Run R3MSE Training History Data

Iteration net I net 2 net 3 net 4 net 5 net 6 net 7 net 8 net 9 net 10 Mean STD
%crct %crct /crct %crct %crct 9¢rct 9%crct %crct V1crct %erot %trct %crct

1000 0.00 6.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.69 2.17
2000 0.00 8.82 000 0.00 000 0.00 0.00 2.94 0.00 0.00 1.18 2.84
3000 0.00 28.43 0.00 1.96 31.37 0.00 0.00 7.84 0.00 12.75 8.24 22.21
4000 40.20 30.39 0.00 14.71 26.47 8.82 0.00 6.86 17.65 32.35 17.74 14.11
5000 44.18 57.84 0.00 12.75 49,02 8.82 0.00 32.35 28.43 56.86 29.02 22.62
6000 35.29 59.80 0.00 44.12 42.16 34.31 22.55 60.78 29.41 63.73 39.21 19.65
7000 71.57 67.65 0.00 63.73 74.51 65.69 22.55 70.59 38.23 81.37 55.59 26.46
8000 53.92 69.61 0.00 78.43 75.49 66.67 32.35 80.39 53.92 85.29 59.61 26.27
9000 76.47 82.35 0.00 84.31 74.51 85.29 53.92 90.20 62.75 90.20 70.00 27.24
10000 67.65 87.25 6.86 81.37 81.37 90.20 74.51 88.24- 58.82 96.08 73.23 25.84
11000 57.84 92.16 13.73 79.41 86.27 92.16 92.16 02.16 79.42 99.02 78.43 25.50
12000 77.45 94.12 13.73 88.24 75.49 98,04 98.04 02.16 93.24 85.29 91.57 25.08
13000 82.35 96.08 26.47 94.12 95.10 99.02 99.02 of-.08 95.10 95.10 87.84 22.06
14000 85.29 96.08 26.47 93.14 92.16 200.00 99.02 0.20 98.04 99.02 87.94 22.10
15000 92.16 97.06 15.69 93.14 97.06 100.00 100.00 96.08 99.02 100.00 89,02 25.92
10000 90.20 100.00 20.59 95.10 96.08 200.00 100.00 95.10 100.00 100.00 89.71 24.51
17000 89.22 100.00 17,65 96.07 95.12 100.00 200.00 96.08 100.00 100.00 89.41 25.46
18000 97.06 100.00 47.06 98.04 100.00 100.00 100.00 94.12 100.00 100.00 93.63 16.48
19000 92.16 100.00 55.88 99.02 100.00 200.00 100.00 96.08 100.00 C0.00 94.31 13.75
20000 97.06 100.00 46.08 98.04 100.00 100.00 100.00 93.14 100.0 100.00 93.43 16.78
21000 94.22 100.00 66.67 99.02 100.00 100.00 100.00 96.08 100.00 1O0.00 95.59 10.37
22000 95.10 100.00 51.96 99.02 100.00 100.00 100.00 89.22 100.00 100.00 93.53 15.02
23000 92.16 100.00 80.39 98.04 100.00 100.00 200.00 96.08 100.00 200.00 08.67 6.27
24000 92.16 100.00 56.86 99.02 100.00 100.00 200.00 81.37 100.00 200.00 92.94 14.03
25000 93.14 100.00 76.47 97.06 100.00 100.00 100.00 90.20 100.00 200.00 95.69 7.60
26000 97.06 100.00 86.27 97.06 100.00 100.00 100.00 97.06 100.00 300.00 97.74 4.26
27000 100.00 100.00 89.22 99.02 200.O 100.00 300.00 09.02 100.00 2O0.00 98.73 3.37
28000 100.00 100.00 91.17 98.04 200.00 100.00 200.00 100.00 100.00 100.00 98.92 2.79
29000 100.00 100.00 91.17 97.06 100.00 100.00 200.00 100.00 100.00 100.00 98.82 2.84
30000 100.00 100.00 93.14 99.02 100.00 100.00 100.00 100.00 200.00 100,00 99.22 2.26
31000 100.00 10.00 93.14 96.08 100.00 100.00 100.00 100.00 200.00 10O.0 98.92 2.38
32000 200.00 100.O 95.10 98.04 100.00 100.00 100.00 200.00 100.00 100.00 90.31 1.60
33000 200.00 100.00 97.06 98.04 200.00 100.00 200.00 100.00 100.00 100.00 99.51 1.06
34000 100.00 100.00 66.67 96.08 100.00 200.00 100,00 100.00 100.00 100.00 e6.27 10.47
35000 200.00 100.00 96.08 97.06 100.00 100.00 100.00 100.00 100.00 100.00 99.31 1.47
36000 100.00 200.00 95.10 99.02 100.00 100.00 100.00 300.00 100.00 100.00 99.41 1.55
37000 200.00 100.00 95.20 96.08 100.00 200.00 100.00 100.00 100.00 100.00 99.12 1.87
38000 100.00 200.00 97.06 96.08 100.00 100.00 200.00 100.00 300.00 100.00 99.31 1.47
39000 100.00 100.00 53.92 94,12 100.00 100.00 100.00 100.00 100.00 100.00 94.80 14.48
40000 100.00 100.00 95.10 96.08 100.00 100.00 200.00 100.00 100.00 100.00 99.22 1.87
41000 100.00 100.00 97.06 96.08 200.00 100.00 200.00 100.00 100.00 100.00 90.31 1.47
42000 100.00 100.00 97.06 90.20 100.00 100.00 100.00 100.00 200.00 100.00 98.13 3.14
43000 100.00 100.00 80.39 96.08 100.00 100.00 100.00 100.00 200.00 100.00 97.65 6.19
44000 100.00 100.00 99.02 91.18 100.00 200.00 100.00 100.00 100.00 100.00 99.02 2.77
45000 100.00 100.00 98.04 97,06 300.00 100.00 100.00 100.00 100.00 100.00 99.51 2.06
46000 100.00 100.00 98.04 97.06 100.00 100 .00 100.00 200.00 100.00 IO.00 99.51 2.06
47000 200.00 100.00 96.08 74.51 100.00 100.00 100.00 100.00 200.00 100.00 97.06 8.02
48000 100.00 100.00 99.02 99.02 200.00 200,00 100,00 100.00 200.00 100.00 99.80 0.41
49000 100.00 200.00 99.02 200.00 100.00 200.00 100.00 200.00 100.00 100.00 99.90 0.31
50000 20000 20000 9902 20000 10000 10000 10000 10000 100 00 10000 99 90 0 31
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Table A.6. Run R3aMSE Training History Data

Iterations net I net 2 [ net3 net 4 net 5 net 6 net 7 net 8 net 9 net 10 Mean STD
%crct %crct %crct %crct %crct %crct %crct %crct %crct %Crct %crct %crct

1000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2000 0.00 3.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,39 1.24
3000 0.00 7.84 0.00 0.00 0.00 0.00 1.96 0.00 0.00 0.00 0.98 2.49
4000 3.92 6.86 0.00 3.92 2.94 0.00 2.94 0.98 0.00 0.00 2.16 2.35
5000 32.35 26.47 2.94 6.86 9.80 0.00 16.67 3.92 3.92 25.69 11.86 10.78
6000 45.10 39.22 13.73 22.55 41.18 1.96 26.47 19.61 15.69 33.33 25.88 13.79
7000 60.78 55.88 40.20 49.02 56.86 25.49 50.00 37.25 39.22 45.10 45.98 10.73
8000 69.61 66.67 58.82 70.59 67.75 42.26 56.86 52.94 46.08 61.76 59.32 9.89
9000 70.59 68.83 65.69 73.53 72.55 59.80 72.55 67.65 54.90 66.67 67.26 5.96
10000 70.59 77.45 77.45 81.37 73.53 63.73 79.41 71.57 65.69 67.65 72.84 6.02
11000 76.47 78.43 82.35 83;33 78.43 72.55 81.37 73.53 70.59 76.47 77.35 4.27
12000 87.25 83.33 76.47 82.35 86.27 78.43 86.27 78.43 78.43 82.35 81.96 3.87
13000 89.22 89.22 73.53 93.14 93.14 88.24 91.18 88.24 78.43 81.37 86.57 6.59
14000 88.24 90.20 83-33 95.20 89.22 87.25 94.12 86.27 85.29 83.33 88.23 4.06
15000 88.24 92.16 92.16 93.14 96.08 86.27 94.12 88.24 00.20 88.24 90.88 3.14
16000 90.20 93.14 94.12 95.10 9E.04 94.12 96.08 88.24 94.12 89.22 93.24 3.11
17000 89.22 92.16 92.16 96.08 95.10 97.06 95.10 92.16 93.14 91.18 93.34 2.44
18000 92.16 93.14 96.08 97.06 99.02 98.04 98.04 89.22 90.20 98.04 95.10 3.61
19000 88.24 95.10 96.08 96.08 100.00 100.00 98.04 93.14 96.08 97.06 95.98 3.44
20000 91.18 93.14 98.04 99.20 100.00 100.00 98.04 90.20 99.20 100.00 96.90 3.86
21000 85.29 93.14 98.04 97.06 100.00 100.00 97.06 96.08 99.20 100.00 96.59 4.52
22000 91.18 93.14 98.04 96.08 100.00 100.00 99.02 92.16 99.02 100.00 96.86 3.48
23000 86.27 91.28 99.02 98.04 100.00 100.00 100.00 97.06 100.00 100.00 97.16 4.70
24000 90.20 92.16 99.02 98.04 100.00 100.00 100.00 93.14 100.00 100.00 97.26 3.86
25000 89.22 78.43 100.00 98.04 100.00 100.00 100.00 97.06 100.00 100.00 96.27 7.11
26000 94.12 87.25 100 00 98.04- -100.00 100.00 100.00 98.04 100.00 200.00 97.74 4.14
27000 93.14 93.14 100.00 98.04 100.00 100.00 100.00 94.12 100.00 100.00 97.84 3.09
28000 94.12 93.14 100.00 98.04- 100.00 100.00 100.00 97.06 100.00 100.00 98.24 2.65
29000 94.12 84.31 100.00 87.25 100.00 100.00 100.00 97.06 100.00 100.00 96.27 5.90
30000 96.08 90.20 100.00 96.08 100.00 100.00 100.00 98.04 10.00 100.00 98-04 3.20
31000 96.08 82.35 100.00 95.10 100.00 100.00 100.00 95.10 100.00 100.00 96.86 5.54
32000 96.08 90.20 100.00 96.08 100.00 100.00 100.00 97.06 100.00 100.00 07.94 3.22
33000 96.08 89.22 100.00 95.10 100.00 100.00 100.00 99.02 100.00 100.00 97.94 3.56
34000 93.14 94.12 100.00 94.12 100.00 100.00 100.00 06.08 100.00 100.00 97.75 3.00
55000 95.10 92.16 100.00 87.25 100.00 100.00 100.00 94.12 100.00 100.00 96.86 4.52
36000 93.14 86.27 100.O0 93.14 100.00 100.00 100.00 98.04 100.00 100.00 97.06 4.71
37000 91.18 90.20 100.00 89.22 100.00 100.00 100.00 99.02 100.00 100.00 96.96 4.70
30000 94.12 89.22 100.00 91.18 100.00 100.00 100.00 98.04 100.00 100.00 97.26 4.1b
39000 94.12 95.10 100.00 88.24 100.00 100.00 100.00 99.02 100.O 100.00 97.65 3.98
40000 93.14 90.20 100.00 86.27 100.00 100.00 100.00 95.10 100.00 100.00 96.47 5.07
41000 91.18 95.10 100.00 78.43 100.00 100.00 100.00 95.10 100.00 100.00 95.98 6.91
42000 87.25 98.04 100.00 85.29 100.00 100.00 100.00 93.14 100.00 100.00 96.37 5.76
43000 71.57 98.04 100.00 91.18 100.00 100.00 100.00 90.20 100.00 100.00 95.10 9.10
44000 86.27 99.02 100.00 96.08 100.00 100.00 100.00 84.31 100.00 100.00 96.57 6.09
45000 93.14 99.02 100.00 90.20 100.00 100,00 100.00 93.14 100.00 100.00 97.55 3.82
46000 91.18 99.02 100.00 90.20 100.00 100.00 100.00 98.04 100.00 100.00 97.84 3.83
47000 94.12 100.00 100.00 96.08 100.00 100.00 100.00 97.06 100.00 100.00 98.73 2,17
48000 06.08 100.00 100.00 95.10 100.00 100.00 100.00 100.00 100.00 100.00 90.12 1.87
49000 97.06 100.00 100.00 97.06 100.00 10.00 100.00 99.02 100.00 100O.0 99.32 1.23

50000 9706 100 0 1000 9608 1000 1000 1000 0 10000 10000 1000 99.31 1 .2
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Table A.7. Run R3aCE Training History Data

Iteration net 1 net 2 net 3 net 4 net 5 net t' let- . net 8 net 9 net 1O Mean "STD
%crct %crct %cect 9crct "Crct T9 Y %crct

1000 0.00 6.86 9.00 2.94 0.00 0,00 5.88 8.82 0.00 0.00 2.45 3.29
2000 19.61 25.49 31.37 20.59 18.63 16.67 27.45 11.16 40.20 9.80 22.16 8.73
3000 52.94 54.90 63.73 44.12 .6.47 39.22 54.90 52.94 47.06 55.88 54.22 9.85
4000 95.10 73.53 46.08 83.33 90.20 40.20 78.43 74.51 60.78 69.61 71.18 16.89
5000 95.10 91.18 57.84 96.08 91.18 57.84 89.22 80.39 75.49 81.37 81.57 13.42
6000 95.10 84.31 91.18 90.20 S7.06 67.65 90.20 79.41 89.22 95.10 87.94 8.40
7000 99.02 88.24 91.18 92.16 96.08 79.41 92.16 100.00 84.31 100.00 92.25 6.52
8C90 99.02 97.06 97.06 89.22 93.14 79.41 99.02 100.00 93.14 100.00 94.71 6.11
9000 98.04 96.08 100.00 97.06 100.00 94.12 100.00 100.00 96.08 100.00 98.14 2.08
O00O 99.02 99.02 100.00 96.08 100.00 99.02 100.00 200.00 83.33 100.00 97.65 4.91

11000 200.00 100.00 100.00 98.04 100.00 100.00 100.00 100.00 96.08 100.00 99.41 1.26
12000 100.00 200.00 100.00 100.00 100.00 100.00 100.00 100.00 78.41 100.00 97.84 6.48
13000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 92.16 1O0.00 99.22 2.35
14000 100.00 100.00 100.00 100.00 1O0.00 100.00 M00.00 100.00 91.18 100.00 99.12 2.65
15000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.04 100.00 99.80 0.59
16000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 95.10 100.00 99.51 1.47
17000 100.00 100.00 100.00 100.00 100.00 100O.0 100.00 100.00 92.16 100.00 99.22 2.35
18000 100.00 100.00 200.00 100.00 100.00 100.O0 100.00 100.00 95.10 100.00 99.51 1.47
19000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.04 100.00 99.80 0.59
20000 100.00 100.00 100.00 100.00 100.00 100.00 200.00 100.00 97.06 100.00 99.71 0.88
21000 100.00 100.00 100.00 100.00 100.00 100.00 200.00 100.00 99.02 100.00 99.90 0.29
22000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 94.12 100.00 99.41 1.76
23000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1000.0 94.12 100.00 99.41 1.76
24000 100.00 100.00 100.00 100.00 200.00 100.00 100.00 100.00 97.06 100.00 99.71 0.88
25000 100.00 100.00 100.00 100.00 200.00 100.00 100.00 200.00 99.02 100.00 99.90 0.29
26000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.02 100.00 99.90 0.29
27000 100.00 100.00 100.00 100.00 200.00 100.00 100.00 100.00 99.02 100.00 99.90 0.29
28000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00
29000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00
30000 200 00 100.00 100.00 100.00 100.00 200 00 100 00 100 00 100 00 100 00 100 00 0 00
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Table A.8. Run R3aCFM Training History Data

Iteration net 1 net 2 net 3 net 4 net 5 net 6 net 7 net 8 net 9 net 10 Mean STD
%crct 4crct Verct %crct %cret %eret %eret %crct e %crct %cret /erct %crct

1000 O.O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2000 6.86 37.25 0.00 38.24 33.33 0.00 12.75 15.69 0.00 0.00 14.41 15.30
3000 14.71 45.20 19.61 44.1? 43.14 0.00 40.20 16.67 1.96 16.67 24.22 16.59
4000 11.76 49.02 17.65 49.02 4708 21.57 37.25 34.31 17.65 6.86 29.22 15.24
5000 32.37 50.98 33.33 52.94 48.04 41.18 36.27 36.27 31.37 28.43 39.02 8.36
6000 54.90 50.98 43.14 53.92 49.02 48.04 44.12 37.25 37.25 37.25 45.59 6.48
7000 61.76 48.04 43.14 50.00 52.96 49.02 39.22 39.22 49.02 38.24 46.96 6.88
8000 68.63 46.08 49.02 36.27 52.94 50.98 44.12 48.04 62.75 46.08 50.49 8.81
9000 74.51 29.41 61.76 46.08 44.12 50.00 45.10 54.91 66.67 46.08 51.86 12.33

10000 78.43 36.27 71.57 41.18 54.00 53.92 50.98 55.88 74.51 50.00 56.76 13.26
11000 79.41 52.94 81.37 52.94 58.82 55.88 60.78 52.94 77.45 56.86 62.94 11.09
12000 84.31 59.80 77.45 52.94 58.82 54.00 65.69 53.92 78.43 58.82 64.51 10.86
13000 83.33 62.75 78.43 54.90 63.72 55.88 68.63 62.75 81.37 57.84 66.96 10.04
14000 83.33 63.73 83.33 50.00 65.69 55.88 71.59 70.59 82.35 54.90 68.14 11.67
15000 85.29 64.71 87.25 50.98 64.71 56.86 76.47 76.47 87.25 60.78 71.08 12.56
16000 83.33 71.57 88.24 58.82 67.65 56.86 76.47 79.41 85.29 64.71 73.24 20.51
17000 84.31 70.59 89.22 61.76 69.61 57.84 80.39 83.33 87.25 64.71 74.90 10.78
18000 85.29 76.47 89.22 65.69 67.65 57.84 80.39 83.33 87.25 65.69 75.88 10.36
19000 85.29 00.20 90.20 72.55 71.57 56.86 86.27 82.35 88.24 63.73 78.73 11.22
20000 86.27 79.41 91.18 74.51 71.57 57.84 87.25 83.33 88.24 76.47 79.61 9.48
21000 87.25 81.37 91.18 75.49 72.55 58.82 87.25 86.27 89.22 77.45 80.69 9.39
22000 87.25 83.33 91.28 79.41 72.55 58.82 88.24 89.22 89.22 80.39 81.96 9.45
23000 87.25 84.31 90.02 81.37 74.51 58.82 88.24 90.20 89.22 85.29 82.92 9.23
24000 87.25 86.27 01.18 87.25 73.53 49.02 88.24 91.18 89,22 81.37 82.45 12.21
25000 87.25 85.29 91.18 90.20 73.53 53.92 88.24 91.18 89.22 85.29 83.53 11.01
26000 87.25 85.29 91.18 89.22 74.51 52.94 88.24 91.18 89.22 00.20 83.92 11.32
27000 87.25 86.27 91.18 89.22 74.51 54.90 88.24 91.18 89.22 90.20 84,22 10.80
28000 87.25 83.33 97.06 91.18 74.51 51.96 88.24 91.18 89.22 91.17 84.51 12.23
20000 87.25 83.33 91.18 89.22 74.51 52.94 88.24 91.18 89.22 90.20 83.73 11.31
30000 87.25 86.27 91.18 92.16 74.51 55.88 88.24 91.18 89.22 93.14 84.90 10.89
31000 87.25 86.27 91.18 92.16 74.51 64.71 88.24 91.18 69.22 93.14 85.79 8.63
32000 87.25 67.25 91.18 93.14 74.51 68.63 88.24 91.18 89.22 93.14 86.37 7.79
33000 87.25 87.25 91.18 92.16 74.51 72.55 88.24 91.18 89.22 92.16 86.57 6.77
34000 87.25 87.25 91.18 92.16 74.51 73.53 88.24 91.18 89.22 93.14 86.77 6.65
35000 87.25 89.22 91.18 94.12 74.51 78.43 88,24 91.18 89.22 92.16 86.57 6.77
36000 87.25 90.20 91.18 92.16 74.51 81.37 88.24 91,18 89.22 93.14 87.85 5.45
37000 87.25 89.22 91.18 93.14 74.51 82.35 88.24 91.18 89.22 93.14 87.94 5.39
38000 87.25 90.20 91.18 93.14 74.51 83.33 88.24 91.18 89.22 93.14 88.14 5.33
39000 87.25 90.20 89.22 94.12 74.51 83.33 88.24 91.18 89.22 93.14 88.04 5.35
40000 87.25 91.18 90.20 94.12 74,51 79,41 88.24 91.18 89.22 93.14 87.85 5.89
41000 87.25 90.20 91.18 94.12 74.51 85.29 88.24 91,18 89.22 93.14 88.43 5.28
42000 87.25 91.18 91.18 94.12 71.51 85.29 88.24 91.18 89.22 93.14 88.53 5.32
43000 87.25 90.20 91.18 94.12 74.51 85.29 88.24 91.18 89.22 93.14 88.43 5.28
44000 87.25 01.18 91.18 94.12 74.51 86.27 88.24 91.18 89,22 93.14 88,63 5.27
45000 87.25 92.16 91.18 94.12 74.51 86.27 88.24 91.18 89.22 93.14 88.73 5.32
46000 87.25 92.16 91.18 94.12 74.51 86.27 88.24 91.18 89.22 93.14 88.73 5.32
47000 87.25 92.16 92.16 94.12 74.51 86.27 88.24 91.18 89.22 93.14 88.83 5.37
48000 87.25 92.16 92.16 04.12 74.51 86.27 88,24 91.18 89.22 93.14 88.83 5.37
49000 87.25 92.16 92.16 94.12 74.51 86.27 88.24 91.18 89.22 93.14 88,83 5.37
50000 87.25 92.16 92.16 94 12 74 51 86,27 88 24 91 18 89 22 93 14 88 83 5 37

Table A.9. Run 3 Center at Class Averages - Seed 6

Average Number P(good) P(good)
Threshold of Nodes Training Test

0.50 90 1.0000 0.8900
1.00 75 1.0000 0.8800
1.50 54 0.9902 0.8500
2.00 32 0.9314 0.8500
2.50 20 0.9412 V.o50V
3.00 12 0.8333 0.8200
3.50 8 0.6961 0.7100
4.00 3 0.5000 0.5000
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Table A.10. Probability Matrices for Run 3 Center at Class Averages

Net P(I 11) P(2 11) P(l12) P(2 12) P(good)

netl 0.82 0.18 0.26 0.74 0.78
net2 0.90 0.10 0.24 0.76 0.83
net3 0.74 0.26 0.20 0.80 0.77
net4 0.80 0.20 0.30 0.70 0.75
net5 0.86 0.14 0.24 0.76 0.81
net6 0.90 0.10 0.20 0.80 0.85
net7 0.92 0.08 0.26 0.74 0.83
net8 0.84 0.16 0.28 0.72 0.78
net9 0.80 0.20 0.20 0.80 0.80

netlO 1.00 0.00 0.28 0.72 0.86
netlI 0.94 0.06 0.28 0.72 0.83
netl2 0.90 0.10 0.26 0.74 0.82
netl3 0.94 0.06 0.24 0.76 0.85
netl4 0.80 0.20 0.16 0.84 0.82
neti5 0.94 0.06 0.30 0.70 0.82
netl6 0.80 0.20 0.18 0.82 0.81
net17 0.92 0.08 0.14 0.86 0.89
net18 0.90 0.10 0.22 0.78 0.84
netl9 0.92 0.08 0.28 0.72 0.82
net20 0.88 0.12 0.18 0.82 0.85
net2l 0.74 0.26 0.34 0.66 0.70
net22 0.88 0.12 0.20 0.80 0.84
net23 0.92 0.08 0.22 0.78 0.85
net24 0.80 0.20 0.38 0.82 0.81
ncd25 0.92 0.08 0.28 0.72 0.82
net26 0.92 0.08 0.26 0.74 0.83
net27 0.98 0.02 0.26 0.74 0.86
net28 0.98 0.02 0.50 0.50 0.74
net29 0.86 0.14 0.14 0.86 0.86
net30 0.86 0.14 0.22 0.78 0.82

ean 0.8793 0.1207 0.2433 0.7567 0.818
STD 0.0680 0.0680 0.0693 0.0693 0.0400
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Table A.11. Probability Matrices for Run 3 Nodes at Data Points

Net P(l 11) P(2 11) P(I 12) P(2 12) P(good)

netl 0.86 0.14 0.24 0.76 0.81
net2 0.78 0.22 0.24 0.76 0.77
net3 0.86 0.14 0.12 0.88 0.87
net4 0.78 0.22 0.12 0.88 0.83
net5 would not train
net6 0.94 0.06 0.16 0.84 0.89
net7 0.90 0.10 0.20 0.80 0.85
net8 0.86 0.14 0.14 0.86 0.86
net9 0.88 0.12 0.20 0.80 0.84

netlO 0.96 0.04 0.12 0.88 0.92
netli would not train
netl2 0.84 0.16 0.12 0.88 0.86
netl3 0.94 0.06 0.14 0.86 0.90
netl4 0.88 0.12 0.10 0.90 0.89
net15 0.90 0.10 0.20 0.80 0.85
netl6 0.94 0.06 0.14 0.86 0.90
netl7 0.92 0.08 0.14 0.86 0.89
netl8 0.90 0.10 0.08 0.92 0.91
netl9 0.92 0.08 0.22 0.78 0.85
net20 0.86 0.14 0.14 0.86 0.86
net21 would not train
net22 0.92 0.08 0.12 0.88 0.90
net23 0.90 0.10 0.18 0.82 0.86
net24 0.82 0.18 0.12 0.88 0.85
net25 0.96 0.04 0.12 0.88 0.92
net26 0.68 0.32 0.14 0.86 0.77
net27 0.94 0.06 0.10 0.90 0.92
net28 0.92 0.08 0.32 0.68 0.80
net29 0.86 0.14 0.14 0.86 0.86
net30 0.86 0.14 0.10 0.90 0.88
Mean 0.8807 0.1193 0.1541 0.8459 0.8633
STD 0.0629 0.0629 0,0546 0.0546 0.0416
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Table A.12. Probability Matrices fc.r R3MSE Networks

Net P(l [1) P(2 . ) P(1 12) P(2 12) P(good)

netl 0.72 0.28 0.30 0.70 0.71
net2 0.64 0.36 0.20 0.80 0.72
net3 0.70 0.30 0.08 0.92 0.81
net4 0.72 0.28 0.12 0.88 0.80
net5 0.64 0.36 0.16 0.84 0.74
net6 0.90 0.10 0.22 0.78 0.84
net7 0.78 0.22 0.14 0.86 0.82
net8 0.76 0.24 0.14 0.86 0.81
net9 0.84 0.16 0.20 0.80 0.82

netlO 0.86 0.14 0.24 0.76 0.81
Mean 0.7560 0.2440 0.1800 0.8200 0.7880
STD 0.0893 0.0893 0.0646 0.0646 0.0464
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Table A.13. Probability Matrices for R3aMSE Networks

Net P(1 1 1) P(2 11) P(l j2) P(2 12) P(good)

netl 0.78 0.22 0.24 0.76 0.77
net2 0.64 0.36 0.22 0.78 0.71
net3 0.86 0.14 0.12 0.88 0.87
net4 0.74 0.26 0.14 0.86 0.80
net5 0.78 0.22 0.16 0.84 0.81
net6 0.90 0.10 0.16 0.84 0.87
net7 0.80 0.20 0.20 0.80 0.80
net.8 0.78 0.22 0.14 0.86 0.82
net9 0.90 0.10 0.16 0.84 0.87

net1O 0.94 0.06 0.22 0.78 0.86
Mean 0.8120 0.1880 0.1760 0.8240 0.8180
STD 0.0895 0.0895 0.0409 0.0409 0.0522

Table A.14. Probability Matrices for R3aCE Networks

Net P(1 I) P(2 11) P(l[12) P(2 12) P(good)

netl 0.82 0.18 0.28 0.72 0.77
net2 0.66 0.34 0.24 0.76 0.71
net3 0.82 0.18 0.12 0.88 0.85
net4 0.76 0.24 0.16 0.84 0.80
net5 0.84 0.16 0.18 0.82 0.83
net6 0.94 0.06 0.18 0.82 0.88
net7 0.84 0.16 0.18 0.82 0.83
net8 0.72 0.28 0.16 0.84 0.78
net9 0.92 0.08 0.22 0.78 0.85

netlO 0.88 0.12 0.24 0.76 0.82
Mean 0.8200 0.1800 0.1960 0.8040 9.8120
STD 0.0869 0.0869 0.0479 0.0479 0.0489
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Table A.15. Probability Matrices for R3aCFM Networks

Net P(111) P(2 11) P(112) P(2 12) P(good)

netl 0.48 0.52 0.34 0.66 0.57
net2 0.78 0.22 0.30 0.70 0.74
net3 0.70 0.30 0.16 0.84 0.77
net4 0.66 0.34 0.18 0.82 0.74
net5 0.88 0.12 0.64 0.36 0.62
net6 0.88 0.12 0.44 0.56 0.72
net7 0.72 0.28 0.30 0.70 0.71
net8 0.92 0.08 0.28 0.72 0.82

net9 0.76 0.24 0.16 0.84 0.80
net1O 0.94 0.06 0.28 0.72 0.83
Mean 0.7720 0.2280 0.3080 0.6920 0.7320
STD 0.1412 0.1412 0.1455 0.1455 0.0836

Table A.16. Probability Matrices for Run 3 Majority Vote

Net P(111) P(2 11) P(l12) P(2 12) P(good)

netl 0.78 0.22 0.28 0.72 0.75
net2 0.68 0.32 0.24 0.76 0.72
net3 0.86 0.14 0.12 0.88 0.87
net4 0.72 0.28 0.16 0.84 0.78
net5 0.86 0.14 0.20 0.80 0.83
net6 0.92 0.08 0.22 0.78 0.85
net7 0.76 0.24 0.20 0.80 0.78
net8 0.82 0.18 0.16 0.84 0.83
net9 0.88 0.12 0.16 0.84 0.86

net1O 0.92 0.08 0.24 0.76 0.84
Mean 0,8200 0.1800 0.1980 0.8020 0.8110
STD 0.0827 0.0827 0.0485 0.0485 o.05
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Table A.17. Run 4 Center at Class Averages - Seed 1
Averare Number P(good) P(good)

Threshold of Nodes Training Test
0.25 196 1.0000 0.7900
0.50 178 1.0000 0.7900
0.75 166 1.0000 0.7950
1.00 154 1.0000 0.7950
1.25 131 1.0000 0.7950
1.50 112 0.9804 0.7600
1.75 84 0.8725 0.6600
2.00 64 0.77,5 0.6250

Table A.18. Run 4 CE Training History Data

iteration net I net 2 net 3 net - net 5 net 6 net 7 net 8 net 9 netlO Mean STD
%crct Vcrct %erct ificret %orct %crct %crrt 9crct %crct %crct Ycrct %cret

1000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.45 0.:5 0.77
3000 0.49 0.00 8.33 16.67 0.00 0.00 2.45 9.80 0.00 8.82 4.66 5.87
4000 11.27 12.75 8.82 14.22 0.00 9.31 9.31 12.25 9.80 16.67 10.44 4 44
5000 15.20 15.69 10.78 18.63 5.39 13.24 23.73 15.19 16.67 14.22 13.87 3.64
6000 17.65 18.14 19.61 20.59 12.25 13.24 13.73 15 1 19.61 17.65 16.77 2.96
7000 16.67 18.14 27.45 18.14 18.63 13.73 14.22 17.85 19.61 16.18 18.04 3.80
8000 19.12 22.06 17.16 22.06 21.08 13.73 16,07 22.55 27.94 23.53 20.59 4.05
9000 20.59 18.63 24.51 31.60 19.61 15.09 37.75 29.41 32.84 32.84 20.67 7.81
10000 31.36 34.80 25.49 38.2,S 36.27 10.61 39.22 40.20 51.47 41.18 35.83 8.80
11000 39.71 25.98 40.20 42.16 50.00 29.90 10,69 37.75 58.33 40.02 41.37 9.47
12000 49.51 31.86 29.41 44;61 54.41 34.31 50.49 49.51 54.90 50.49 44.95 9.53
13000 53.92 35.29 37.75 43.63 66.18 44.11 63.24 53.92 63.73 49.51 51.13 10.98
14000 64.22 53.43 53.92 47755 58.33 50.49 68.14 57.35 64.71 55.88 57.40 6.59
15000 68.63 50.98 45.59 51.96 73.53 50.00 73.53 53.45 68.14 49.51 58.83 11.01
16000 67.65 50.49 70.59 63.24_ 79,90 50.43 69.12 62.75 73.04 52.94 64.01 10.05
17000 67.16 53.43 61.27 69.61 57-84 66.18 76.96 38.73 78.43 67.65 63.63 11.69
18000 68.18 56.37 77.45 77.45 -72.55 54.41 79.41 53.33 71.57 74.02 68.77 9.37
19000 75.49 56.80 76.96 77.45 60.67 57.84 87.25 72.06 77.94 63.24 71.18 9.79
20000 69.18 61.27 77.9f 83.29 73-53 66.18 87.75 68.63 80.88 78.43 74.91 8.60
21000 79.41 42.65 82.84 83.33 61.88 60.18 86.76 61.76 58.82 70.10 71.37 14.10
22000 81.37 62.25 76.47 84.80 86.76 75.00 90.69 77.40 83.33 80.39 79.85 7.85
23000 80.88 65.20 76.06 87.25 83,82 74.02 89.22 75.49 78.92 83.82 79.56 7.08
24000 85.29 65.20 69.61 86.27 88.73 72.06 88.24 82.35 77.45 76.47 79.17 8.29
25000 86.76 67.65 78.92 93.14 86.27 72.08 93.63 80.39 85.29 69.12 81.32 9.36
26000 85.29 69.12 80.88 90.20 89.23 73.53 93.14 84.31 83.33 81.37 83.04 7.38
27000 88.24 67 16 84.80 9L.O7 67.75 068.14 94,61 82.84 88.24 82.84 83.63 9.18
28000 83.33 74.51 81.37 95.59 02,16 70.96 95.59 83,33 88.24 84.31 85.54 7.28
29000 49.51 69.61 77;45 95.10 91.18 80.39 94,61 88.24 88.24 86.76 82.11 13.94
30000 53.43 80.88 73.53 90.57 P5.78 78.43 91.67 77.45 82.35 86.27 80.64 11.75
31000 58.33 81.86 85.29 94.12 91.18 75.98 94.61 83.62 89.71 89.71 84.46 10.85
32000 08.63 85.78 84.80 95.59 97.00 79.90 93.63 85,78 91.18 84.31 86.67 8.42
33000 78.92 78.92 82.84 95.59 97.55 81.86 94.61 81.37 90.20 89.71 87.16 7.20
34000 78.92 78.92 83.33 98.04 94.61 75.49 95.10 84.80 90.20 90.69 87.01 7.82
35000 88.24 81.37 86.76 98.53 94.12 80.88 06,57 86.27 92.65 91.67 89.71 6.03
36000 88.73 65.69 87.25 98.04 93.14 76,47 98.08 85,78 90.20 87.75 86.91 9.56
37000 90.20 73.04 72.06 98.53 94.12 82.35 95.59 75.98 94.61 92.65 86.91 10.10
38000 94.61 90.69 85.29 96.08 97.06 83.33 96.08 84.31 04.18 90.09. 91.23 5.24
39000 95.59 90.69 79.00 98.04 98.04 82.84 94.61 86,76 93.63 88.24 90.83 6.28
40000 95.59 89.71 87.75 97.06 85.78 80.88 95.59 84;80 94.61 83.82 89,56 5.80
41000 95.59 88.73 89.22 96.08 96.08 79.41 95.59 67.25 94.18 91.18 91.33 5.37
42000 94.61 94.61 89.71 98.04 94.61 83.33 96.57 88.73 95.10 91.18 92."5 4.14
43000 94.12 91.67 92.65 0 S"" 97.06 83.33 97,06 89-71 95.59 89.71 92.40 4.14
44000 95,59 94.12 94.12 06.5.' 97.55 83.82 96.57 88.73 95,59 89.71 93.24 4.41
45006 96.08 85.29 93.14 S6IS08 97.55 82.35 94.61 89,22 93.C3 01.18 91.91 4.96
46000 97,06 95.59 90.69 03,33 98.04 86.27 96.57 90.20 95.10 90.69 93.87 4.12
41000 96.08 91.18 94.12 94.. 99.02 85,29 96.08 6.27 94.61 91.67 92.89 4.30
48000 97,06 98.t3 92.16 97.00 99.02 84.80 97.06 69.71 04.61 92.65 94,27 4.49
49000 .57 98.53 93.14 98.04 98.53 85.78 97.06 88.73 96.08 60.29 91.27 11.72
50000 08.04 96.08 93.14 98.53 99.51 88.27 93 14 8971 9755 88 24 94 02 4 68
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Table A.19. Probabilities for Run 4 Center at Class Akverages

Net P(I 1) P(2 11) P(3 11) P(4 11) P(I 12) P(2 12) P(3 12) (4 r2

netl 0.72 0.10 0.12 0.06 0.06 0.80 0.08 0.00
net2 0.72 0.10 0.12 0.06 0.00 0.86 0.08 0.00
ne3 0.82 0.00 0.00 0.12 0.24 0.70 0.04 0.02
net4 0.68 0.20 0.02 0.10 0.1a 0.80 0.00 0.00
nets 0.82 0.10 0.06 0.02 0.20 0.08 0.06 0.00
net0 0.70 0.14 0.14 0.02 0.16 0.72 0.12 0.00
net7 0.78 0.02 0.00 0.14 0.28 0.08 0.04 0.00
net8 0.68 0.10 0.10 0.00 0.08 0.80 0.08 0.04
net9 0.58 0.14 0.14 0.14 0.14 0.70 0.12 0.04

netlO 0.63 0.14 0.10 0.08 0.12 0.82 0.06 0.00
netl 0.74 0.OG 0.08 0.12 0.10 0.68 0.14 0.02
netl2 0.58 0.22 0.14 0.06 0.08 0.80 0.06 0.00
netl3 0.72 0.06 0.00 0.22 0.12 0.04 0.24 0.00
netl4 0.78 0.08 0.00 0.08 0.22 0.68 0.10 0.00
net15 0.64 0.18 0.06 0.12 0.20 0.74 0.02 0.04
netl6 0.76 0.00 0.06 0.12 0.14 0.72 0.06 0.08
net17 0.72 0.08 0.18 0.02 0.16 0.74 0.10 0.00
net18 0.74 0.06 0.12 0.08 0.12 0.84 0.04 0.00
netl9 0.64 0.10 0.12 0.14 0.16 0.70 0.08 0.00
net2" 0.76 0.12 0.00 0.00 0.18 0.74 0.08 0.00
net2l 0.61 0.04 0.20 0.10 0.20 0.76 0.04 0.00
net22 0.72 0.12 .10 0.06 0.10 0.78 0.12 0.00
net23 0.76 0.04 0.10 0.10 0.20 0.0 0.06 0.02
net24 0.56 0.08 0.04 0.32 0.12 0.82 0.00 0.00
net25 0.62 0.02 0.04 0.32 0.14 0.82 0.02 0.02
net20 0.00 0.14 0.06 0.20 0.02 0.88 0.08 0.02
net27 0.74 0.10 0.06 0.10 0.12 0.84 0.02 0.02
net28 0.72 0.04 0.14 0.10 0.12 0.74 0.10 0.04
net29 0.72 0.04 0.08 0.10 0.14 0.84 0.00 0.02
net3O 0.72 0.12 0.02 0.14 0.10 0.82 0.02 0.08
Mean 0.7007 0.0933 0.0920 0.1140 0.1407 0.7600 0.0727 0.0147
STD 0.0608 0.0531 0.0508 0.0736 0.0627 0.0701 0.0468 0.0210

Table A.20. Probabilities for Run 4 Center at Class Averages

Net P(c I C) P(2 13) P(3 r73) P(4 13) P(1 14) P(2 1 4) P.(3 14) P(4 14) P(Cood)

netl 0.02 0.06 0.88 0.04 0.24 0.00 0.04 0.72 0.795
net2 0.02 0.06 0.88 0.04 0.24 0.00 0.04 0.72 0.705
net3 0.00 0.06 0.82 0.06 0.16 0.00 0.00 0.84 0.795
net4 0.08 0.10 0.82 0.00 0.12 0.00 0.02 0.86 0.790
net8 0.00 0.12 0.82 0.00 0.18 0.02 0.06 0.74 0.765
net6 0.00 0.10 0.88 0.02 0.08 0.00 0.06 0.86 0.790
net7 0.08 0.02 0.86 0.04 0.12 0.02 0.10 0.76 0.770
net8 0.04 0.08 0.80 0.02 0.08 0.04 0.16 0.72 0.765
net9 0.06 0.12 0.74 0.08 0.06 0.00 0.04 0.90 0.730

ltetlO 0.08 0.12 0.76 0.04 0.08 0.00 0.02 0.84 0.760
netll 0.08 0.12 0.76 0.04 0.16 0.02 0.14 0.68 0.715
net12 0.02 0.18 0.80 0.00 0.14 0.06 0.14 0.66 0.725
net3 0.04 0.04 0.80 0.06 0.10 0.00 0.04 0.86 0.770
netl4 0.06 0.01 0.90 0.00 0.12 0.02 0.10 0.76 0.780
netlS 0.02 0.04 0.88 0.06 0.16 0.04 0.00 0.74 0.750
netl6 0.02 0.04 0.84 0.10 0.08 0.02 0.10 0.80 0.780
netl7 0.10 0.04 0.82 0.04 0.18 0.04 0.22 0.56 0.710
netJ8 0.02 0.18 0.80 0.00 0.24 0.00 0.08 0.68 0.705
net9 0.00 0.10 0.82 0.02 0.12 0.02 0.12 0.74 0.740
net20 006 0.02 0.88 0.04 0.00 0.00 0.10 0.84 0.805
net2l 0.06 0.04 0.82 0.08 0.10 0.00 0.10 0.80 0.760
net22 0.02 0.18 0.74 0.06 0.14 0.00 0.06 0.80 0.70
net23 0,00 0.08 0.84 0.02 0.08 0.00 0.02 0.00 0.790
net24 0.02 0.12 0,84 0.02 0.04 0.02 0.06 0.88 0.775
net25 0.10 0.04 0.84 0.02 0.08 0.02 0.00 0.84 0.780
net20 0.00 0.04 0.00 0.00 0.08 0.16 0.04 0.72 0.775SM.27 0.0^ 0,10 0.^2 0.00 0.32 0.02 0.00 0.66 0.45
net28 0.06 0.00 0.86 0.02 0.12 0.02 0.04 0.82 0.785
net29 0.06 0.12 0.70 0.12 0.18 0.04 0.14 0.04 0.725
net30 0.02 0.14 0.84 0.00 0.12 000 006 082 0 800
M e a .0 5 0 7 0 0 5 0 . 9 3 0 .0 3 4 7 0 .1 3 2 7 0 .2 3 0 .0 7 4 . 0 .7 7 2 0 0 :7 6 7 0SrD 0.0272 0.0475 0.0498 0.0319 0.0644 0.0319 0.0510 0.0854 0.0259
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Table A.21. Probabilities for Run 4 Cross Entropy

Net P(l 11) P(211) P(311) P(4 11) P(1 12) P(2 12) P(312) P(4 12)

netl 0.65 0.24 0.04 0.04 0.12 0.68 0.16 0.04
net2 0.56 0.18 0.06 0.20 0.20 0.72 0.06 0.02
net3 0.78 0.08 0.04 0.10 0.22 0.64 0.08 0.08
net4 0.62 0.20 0.08 0.10 0.12 0.80 0.08 0.02
netS 0.66 0.22 0.02 0.10 0.24 0.60 0.04 0.12
net6 0.62 0.16 0.10 0.06 0.12 0.76 0.12 0.00
net? 0.68 0.08 0.00 0.24 0.24 0.68 0.00 0.08
net8 0.66 0.18 0.00 0.16 0.12 0.76 0.02 0.10
net9 0.42 0.16 0.06 0.36 0.20 0.70 0.04 0.06

IletlO1 0.58 0.16 0.08 0.18 0.26 0,70 0.04 0.00
Mean 0.0260 0.1660 0.0540 0.1540 0.1840 0.7040 0.0000 0.0520
STD 0.0948 0.0525 0.0472 0.0962 0.0580 0,0595 0.0471 0.0424

Table A.22. Probabilities for Run 4 Cross Entropy

Net P( 13) P(2 13) P(3 13) P(4 13) P1I 14) P(2 14) P(3 14) P(4 14) P(good)

netl 0.18 0.06 0.72 0.04 0.16 0.00 0.06 0.78 0,715
net2 0.08 0.16 0.74 0.02 0.12 0.08 0.08 0.72 0,685
net3 0.12 0.16 0.64 0.08 0.20 0.00 0.04 0.76 4.705
net4 0.14 0.10 0.70 0.06 0.14 0.00 0.06 0.80 0.730
netS 0.06 0.26 0.68 0.10 0.18 0.04 0.06 0.72 0.665
net 0.02 0.16 0.76 0.06 0.08 0.06 0.04 0.82 0.740
net7 0.06 0.08 0.78 0.08 0.20 0.10 0.04 0.66 0.700
net8 0.10 0.22 0.72 0.06 0.18 0.02 0.06 0.74 0.720
neto 0.10 0.14 0.62 0.14 0.04 0,14 0.04 0.78 0.630

netlO 0.20 0.12 060 0.08 0.16 0.10 002 0 72 0.650
Mean 0.100 0.1260 0.6960 0.0720 0.1460 0.0540 0.0500 0.7500 0.6940
STD 0 0558 0.0366 0 0602 0_0329 00525 0 0499 0 0170 00474 0 0360
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Appendix B. Data File Samples and Processing Software

B.1 Preprocessing of Correlation Product Data Files.

The preprocessing of the correlation product data was performed using a com-

mercial digital signal processing package called DADiSP Worksheettrn, by DSP De-

velopment Corporation, One Kendall Square, Cambridge, MA 02139. The software

is a graphics-based worksheet with a multi-window environment. For this thesis, the

1,000- point data files were loaded into a DADiSP Labbook called THESIS which

also contained the Worksheet called REDUCE2 shown below. The Command File

shown on the next page was used to automate the reduction task. The Command

File, loaded into WINDOW 1 of the Worksheet, controlled the input of the 1, 000

pob t data files into the Worksheet and the output to drive A: of the reduced 50

point data files. A sample of a Direct Sequence correlation product before and after

processing is shown in Figures B.1 and B.2.

DADiSP Worksheet algorithm implemented in a
worksheet called REDUCE2.

WINDOW 1 : <file read in here>

WINDOW 2 : Decimate(W1,2,1)
WINDOW 3 : Decimate(Wi,2,2)
WINDOW 4 : Avg(W2,W3)
WINDOW 5 : Abs(W4) I fmax
WINDOW 6 : W4/getpt(W5,curpos(W5)) I fmax I nmove(-25)
WINDOW 7 : Extract(W6,curpos(W6) ,50)
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Sample of DADiSP Worksheet Command File.

Qcntl-home
cQf8 00RR97,1 @cr Ocr writea("A:\corrdat2\fcorr97.dat"l,w7) Ocr
Qf8 CORR98.1 Ocr Ocr writea("'A:\corrdat2\fcorr98.dat"l,w7) Ocr
Mf CORR99.1 Ocr Ocr writea("A:\corrdat2\fcorr99.dat",w7) Ocr
Mf CORR100.I. @cr Ocr writea('A:\corrdat2\fcorriOO.dat",w7) Ocr
Mf CORR1O1.1 Qcr @cr writea("IA:\corrdat2\fcorrl~l.dat", w7) Ocr
Qf8 CORRIQ2.I. Ocr Ocr writea("A:\corrdat2\fcorrIO2.dat",w7) Ocr
Mf CORR1O3.1 Ocr cOcr writea("A:\corrdat2\fcorrlQ3.dat",w7) Ocr
Mf CORR1O4.1 Ocr Ocr writea("A:\corrdat2\fcorrlQ4.dat",w7) Ocr
Qf8 CORR1O5.1 Qcr Ocr writea("A:\corrdat2\fcorrIO5.dat",w7) Ocr
Df 8 CORR1O6.1 Qcr Ocr writea("A:\corrdat2\fcorrlO6.dat",w7) Ocr

(Same pattern repeated for each CORRXX.1 file)

Qf8 C0RR264.1 Ocr Ocr writea("A:\corrdat2\fcorr264.dat",w7) Qcr
Mf CORR265.1 Ocr Ocr writea("A:\corrdat2\fcorr265.dat",w7) Ocr
Qf8 CORR266.1 ccr @cr writea("A:\corrdat2\fcorr266.dat",w7) Ocr
@f8 00RR267.1 Ocr Ocr writea("A:\corrdat2\fcorr267.dat",w7) Ocr
Mf C0RR268.1 Ocr Ocr writea("A:\corrdat2\fcorr268.dat",w7) Ocr
Qf 8 C0RR269.1 Ocr Ocr writea("A:\corrdat2\fcorr269.dat",w7) cOcr
Qf8 00RR270.1 cOcr Ocr writea("A:\corrdat2\fcorr270.dat",w7) Ocr
Mf CORR271.. Ocr Ocr writea("A:\corrdat2\fcorr27l.dat",w7) Ocr
Qf8 C0RR272.1 Qcr Ocr writea("A:\corrdat2\fcorr272.dat",w7) Ocr
Qf 8 C0RR273.1 Qcr Qcr writea("A:\corrdat2\fcorr273.dat",w7) @cr
Oesc Oesc Oesc y Oesc Oesc Oesc
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Figure B.1. Direct Sequence Correlation Product CORR18 Before Processing
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Figure B.2. Direct Sequence Correlation Product CORR18 After Processing
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B.2 Construction of Datasets.

In this section, the details of the construction of the input data files required

by the ANN simulator software will be presented. The data construction program

is written in QuickBasic' ' . First, the program prompts the user for the name of an

input file containing the sequence number, filename, and the class for each correlation

signature to be used in the data set. Next, the user must provide a name for the file

in which the output of this program will be written. This file will be used as the input

to the ANN simulator. Finally, the user must specify the number of elements in each

vector. This number must be 50 for all reduced correlation signatures used in this

thesis. A sample of an input file and the source code for the program BUILDIN.BAS

follows:

Sample input file for constucting a dataset.

1, "d:\data\corrdatl\fcorr6.dat", 1
2, "d:\data\corrdat4\fcorr6l.dat", 2
3, "d:\data\corrdatl\fcorr9.dat", 1
4, "d:\data\corrdat4\fcorr63.dat", 2
5, "d:\data\corrdatl\fcorrl2.dat", 1

6, "d:\data\corrdat4\fcorr65.dat", 2
7, "d:\data\corrdatl\fcorrl4.dat", 1
8, "d:\data\corrdat4\fcorr67.dat", 2

(Same pattern repeated for each file included in dataset)

194, "d:\data\corrdat4\fcorr235.d t", 2
195, "d:\data\corrdatl\fcorrl96.dat", 1
196, "d :\data\corrdat4\fcorr237.dat", 2
197, "d:\data\corrdatl\fcorrl98.dat" , 1
198, "d:\data\corrdat4\fcorr239.dat", 2
199, "d:\data\corrdatl\fcorr200.dat", 1
200, "d:\data\corrdat4\fcorr24i.dat", 2
201, "d:\data\corrdatl\fcorr202.dat", 1
202, "d:\data\corrdat4\fcorr243.dat", 2
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Source Code for BUILDIN

'Program: BUILDIN.BAS
'Description: This routine reads a ASCII data file called
'names$ consisting of multiple lines of a sequence number,
'a filename, and a class number. The filenames contain 50
'element correlation product vectors in a column. Each vector
'file is read and then written to a data file named by the
'user. The format for the super file is

element(O), element(i), ... , element(48), element(49)

Class #
element(O), element(i), ... , element(48), element(49)

Class #
element(O), element(1), ... , element(48), element(49)

Class #

EOF

'This file will be used as an input file for the ANN simulator
'software written by Dan Zahirniak.

INPUT "What is the file containing the name & class data"; names$
CLS
INPUT "What shall I name the ANN data file"; data$
CLS
INPUT "How many elements per vector"; inelements
CLS
DIM vector!(inelements%)
PRINT "Name file - "; names$

PRINT "ANN data file - "; data$

PRINT
PRINT "File being processed -

OPEN super$ FOR OUTPUT AS #1
OPEN names$ FOR INPUT AS #2
DO UNTIL EOF(2)

INPUT #2, number%, file$, class%

LOCATE 4, 26
PRINT file$
OPEN file$ FOR INPUT AS #3

B-5



FOR i = 0 TO (inelements% - 1)
INPUT #3, vector!(i)

NEXT i
CLOSE #3
FOR i = 0 TO (inelements% - 1)

PRINT #1, vector!(i);"
NEXT i
PRINT #1,
PRINT #1, class%.

LOOP
CLOSE
END
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B.3 ANN Simulator Menu and Output Files.

In this section, samples of the menu used to select the parameters for each

network and samples of actual output files of the network~s will be shown. The menu

used to set-up the networks is contained in a larger file called NETMENU.C. The

output files generated by the ANN simulator software will be used to construct the

tables containing the results of the various runs.

The Menu for the ANN simulator is shown below. This is the menu used- to

run the CE back-propagation network with a randomization seed of 8.

/*****************TEST * *******22******** 2**********

static char train.file[] = "class4.in";
static char test-file[] = "class4.in";
static char output.file[] "Extra-info.out;
static char selection-file[] = "CE4S8.SEL";
static char MSE-file[] = "MSE-data.out";
static char CFMfile[] = "CFM-data.out";
static char CEfile[] = "CE4S8.OUT";

normalize-the-data = 0; ** 1 = yes */
find-the-distance = 0; /* I = yes */

dimension = 50;

train-set = 204; /* Randomization Rule */
test-set = 200; /* i - load separate files */
classes = 4; /* 2 - load from single file */
randomization-rule 3; /* 3 - load by class */

trainingpatterns-in-class[l] = 51;
training-patterns-inclass [2] = 51;
training.patterns-in-class [3) = 51;
training-paterns-in-class[4) = 51;
training-patternsin-class [5) = 0;
training-patternsin.class [6] = 0;
training-patterns-in-class [7] = 0;
training-patterns-in-class [8] = 0;
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training-.patterns-n.class [9] = 0;
training-patterns-n.class [10] =0;

wght-seed= 0; sigma.seed= 0; data-.seed= 8; record-.seed= 1;

network-.type = 1; number..of-layers = 3;

nodes-in-ayer [0] dimension;
nodes-.inlayer [1] =24;
nodes..in..layer [2] =12;
nodes..in-layer [3] 4;

train ing-rule [0] =0;

training.rul# [1] =7;

/*1-nodes at data points 2-center class average 3- K-meahL *
/*sig-thres, out-thres avg-thresh sigthresh sig rule 3or4*/

/*4-kohonen 5-MSE backprop 6-CFM backprop 7-CE backprop *
/* nodes-.x MSE stuff CFM stuff CE stuff *

training-.rule[2] = Q

/*1-matrix invert 2-MSE backprop 3-CFM-backprop 4-CE backprop*I
/*5-Parzen window MSE stuff CFM stuff CE stuff */

training-.rule[3] = 0;

/*1-MSE backprop 2-CFM backprop 3-CE backprp 4-Parzen window *
/* MSE stuff CEM stuff CE stuff *

sigma-.threshold = 4; kohonen-.iterations = 20000;
output-.threshold = 1; nodes-x = 7;
average-.threshold = 1;

MSE-.iterations =30000; CFM..alpha = 1.0; CE-.epsilon = .05;
MSE-.error..delta = .1; CFM..beta = 4.0; CE-iterations=5OOOO;
MSE-.momentum =.1; CFM..etua = .14; CE-momentum = .05;
MSE-.eta = .3; CFM-.zeta = 0; CE..eta = 1.5;
MSE-.successes =100; CFM-.successes =100; CE-successes =10000;

CFM-.iterations =50000;
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OFM-momentum = .1;
CFM-delta = 1.0;

transfer-function[O] = 0; /* 1- sigmoidal */
transfer-function[l] = 1; /* 2 -rbf */
'ransfer-function[2] = 1; /* 3- linear */
transfer-function[3] = 1;

sigma.rule = 1; /* Sigma rules I- scale by constant */
interference-threshold = .4;
sigma-factor = .1; /* 2 - half nearest neighbor */
sigma-constant = 1.0; /* 3 - constant
p-neighbors = 7; /* 4 - p neighbor average
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The output hiles for ti: network selected by the menu shown on the previous

pages will be shown. A. specified in the first few lines of the menu, the output files

shown will be called CE4SS.SEL and CE4SS.OUT. The .SEL file contains the infor-

mation on the network set-up as well as output results such as classification accuracy

and vectors misclassified. The ..)EL filc will be used to construct the probability

matrix tables found in APPENDIX A. The classification accuracy percentages and

the misclassified vectors are based on the "good" classification metric. The .OUT

file, generated for back-propagation networks only, contain the training and test

history of the networks based on the "right" classification metric. The .OUT files

will be used to construct the back-propagation traning performance plots found in

Chapter 4.

Sample .SEL file from ANN software simulator

CE4S8.SEL

Training file = class4.in Test file = class4.in

with 204 training vectors and 200 test vectors
dimension = 50 classes = 4

load by class
training patterns in class I = -51
training patterns in class 2 = 51
training patterns in class 3 = 51
training patterns in class 4 = 51

weight seed = 0 sigma seed = 0 data seed = 8 record seed = 1

startin- network topology
network type = feedforward with number of layers = 3
nodes in layer 0 = 50
nodes in layer 1 = 24
nodes in layer 2 = 12
nodes in layer 3 = 4

layer 1 transfer function = sigmoid
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layer 2 transfer function = sigmoid
layer 3 transfer function = sigmoid

CE layer I and all others
eplison = 0.050000 iterations = 50000 momentum 0.050000
eta = 1.500000 errors = 15000

Final topology
network type = feedforward with number of layers = 3
nodes in layer 0 = 50

nodes in layer I = 24
nodes in layer 2 = 12
nodes in layer 3 = 4

training data
total errors = 1
per cent correct = 99.509804
record 43 misclassified as 1
records in class 1 51
records in class 2 = 51
records in class 3 = 51
records in class 4 = 51

test data
total errors = 56
per cent correct = 72.000000
record 232 misclassified as 2
record 72 misclassified as 4
record 209 misclassified as I
record 88 misclassified as 4
record 47 misclassified as 1
record 276 misclassified as 4
record 4 misclassified as 4
record 78 misclassified as 4
record 395 misclassified as I
record 45 misclassified as 4
record 55 misclassified as 1
record 187 misclassified as i
record 137 misclassified as 4
record 121 misclassified as 4
record 0 misclassified as 2
record 271 misclassified as 2
record 212 misclassified as 4
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record 255 misclassified as 1
record 53 miaclassified as 1

record 161 misclassified as 1
record 264 misclassified as 2

record 171 misclassified as 3
record 70 misclassified as 4
record 92 misclassified as 2

record 285 misclassified as 4
record 259 misclassified as 3
record 146 misclassified as 2
record 322 misclassified as 2
record 64 misclassified as 2
record 125 misclassified as 1
record 208 misclassified as 2
record 48 misclassified as 4
record 197 misclassified as I
record 103 misclassified as 1
record 370 misclassified as I
record 369 misclassified as 4
record 119 misclassified as 3
record 275 misclassified as I
record 38 misclassified as 2
record 313 misclassified as 3
record 374 misclassified as 2
record 378 misclassified as I
record 318 misclassified as 2
record 14 misclassified as 4
record 101 misclassified as 1

record 80 misclassified as 2
record 247 misclassified as 1
record 332 misclassified as 2
record 143 misclassified as 1

record 142 misclassified as 2
record 82 misclassified as I
record 280 misclassified as 4
record 118 misclassified as 1
record 66 misclassified as 1
record 36 misclassified as 2
record 296 misclassified as 4
records in class I = 50
records in class 2 = 50
records in class 3 = 50
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records in class 4 = 50
total per cent correct = 85.891090

Sample .OUT history output file produced by ANN simulator

CE4S8.OUT

iteration = 1000 training correct = 0.000000 test correct = 0.00
iteration = 2000 training correct = 0.000000 test correct = 0.00
iteration = 3000 training correct = 2.450980 test correct = 2.50
iteration = 4000 training correct = 12.254902 test correct = 11.50
iteration = 5000 training correct = 15.196078 test correct = 12.50
iteration = 6000 training correct = 15.196078 test correct = 11.50
iteration = 7000 training correct = 17.647058 test correct = 12.50
iteration = 8000 training correct = 22.549019 test correct = 15.00
iteration = 9000 training correct = 29.411764 test correct = 18.50
iteration = 10000 training correct = 40.196079 test correct = 27.00
iteration = 11000 training correct = 37.745098 test correct = 24.50
iteration = 12000 training correct = 49.509804 test correct = 29.00
iteration = 13000 training correct = 53.921570 test correct = 36.50
iteration 14000 training correct = 57.352940 test correct = 31.50
iteration = 15000 training correct = 53.431374 test correct = 36.50
iteration = 16000 training correct = 62.745098 test correct = 39.50
iteration = 17000 training correct = 38.725491 test correct = 29.50
iteration = 18000 training correct = 58.333332 test correct = 33.50
iteration = 19000 training correct = 72.058823 test correct = 42.50
iteration = 20000 training correct = 68.627449 test correct = 41.50
iteration = 21000 training correct = 61.764706 test correct = 35.00
iteration = 22000 training correct = 77.450981 test correct = 44.50
iteration = 23000 training correct = 75.490196 test correct = 45.00
iteration = 24000 training correct = 82.352943 test correct = 47.50
iteration = 25000 training correct = 80.392159 test correct = 46.00
iteration = 26000 training correct = 84,313728 test correct = 49.50
iteration = 27000 training correct = 82.843140 test correct = 44.50
iteration = 28000 training correct = 83.333336 test correct = 48.00
iteration = 29000 training correct = 88.235291 test correct = 49.00
iteration = 30000 training correct = 77.450981 test correct = 46.00
iteration = 31000 training correct = 83.823532 test correct = 52.00
iteration = 32000 training correct = 85.784317 test correct = 53.50
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iteration = 33000 training correct = 81.372551 test correct = 47.00
iteration = 34000 training correct = 84.803925 test correct = 49.00
iteration = 35000 training correct = 86.274513 test correct = 52.00
iteration = 36000 training correct = 85.784317 test correct = 48.50
iteration = 37000 training correct = 75.980392 test correct = 53.00
iteration = 38000 training correct = 84.313728 test correct = 55.50
iteration = 39000 training correct = 86.764709 test correct = 54.50
iteration = 40000 training correct = 84.803925 test correct = 55.00
iteration = 41000 training correct = 87.254906 test correct = 54.50
iteration = 42000 training correct = 88.725487 test correct = 56.00
iteration = 43000 training correct = 89.705879 test correct = 57.00
iteration = 44000 training correct = 88.725487 test correct = 54.50
iteration = 45000 training correct = 89.215683 test correct = 55.00
iteration = 46000 training correct = 90.196075 test correct = 55.50
iteration = 47000 training correct = 86.274513 test correct = 56.50
iteration = 48000 training correct = 89.705879 test correct = 54.00
iteration = 49000 training correct = 88.725487 test correct = 57-50
iteration = 50000 training correct = 89.705879 test correct = 59.50

B-14



B.4 Processing of ANN Output.

In this section, the QuickBasictln programs used to process the information

contained in the selection file generated by the ANN simulator will be presented.

Both programs use the records misclassified to produce probability matrix tables

located in Appendix A. PTAB2.BAS is used to produce the matrices for two class

runs and PTAB4.BAS is used to produce the matrices for the four class run. The

selection file as shown in Section B.3 of this appendix is edited to produce files to

be used by the programs. The program requires the user to provide the name of

a file containing a list of filenames. The files specified by the list contain records

miscl.ssified information taken from' the selection file.

Sample input file for PTAB2.BAS containing the 8
records misclassified for a particular network

neti .dat

107
200
133
199
23
77
111
116

'Program: PTAB2. BAS
'This routine reads the data file containing test vectors
'misclassified yielded by each net for the two class runs. It
'then calculates the P mtatr'ix for that net. Multiping the

'values of the P matrix by 100 yields the actual observed
'percent correct (or wrong) performance of the net. The
'routine writes this info to a file in rows for each
'net data file in the name$ file. If the user specifies
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'LOTUS format, the result is a table ready for import into
'LOTUS for computing the average of each column
'(P(1/i), P(2/1), P(1/2), P(2/2), and P(good) )

OPTION BASE I

REM $DYNAMIC

LOCATE 23, 2
INPUT "What source file for the data file names"; name$
CLS
LOCATE 23, 2

INPUT "Filename for probability matrix table"; matrix$
CLS

LOCATE 23, 2
INPUT "Filename for out of class vector log"; verror$
CLS
DO

LOCATE 23, 2
INPUT "Do you want Lotus type file"; a$

LOOP UNTIL a$ = "y" OR a$ = "n"

CLS
LOCATE 12, 31

PRINT "WORKING .....
DIM cerror%(2), vectornum%(50), classcount%(2)
DIM prob!(5)
OPEN matrix$ FOR OUTPUT AS #1
OPEN name$ FOR INPUT AS #2
OPEN verror$ FOR OUTPUT AS #3
IF a$ = "n" THEN

PRINT #, "Net ID P(111) P(211) P(112) P(212) P(good)"
PRINT #1, "- ----------------------------------------------------
END IF
PRINT #3, "Net ID Out - of - Class vectors"

PRINT #3, "- ---------------------------------------------------
DO UNTIL EOF(2)

FOR i = 1 TO 2
cerror%(i) = 0
classcount%(i) = 0

NEXT i
wrong% = 0
INPUT #2, net$
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OPEN net$ FOR INPUT AS #4

DO UNTIL EOF(4)

INPUT #4, missed%
missed% = missed% + 103
IF missed% MOD 2 = I THEN

classcount%(1) = classcount(1) + 1
cerror%(1) = cerror%(1) + 1

wrong% = wrong% + I
vectornum%(wrong%) = missed%

ELSE cerror%(2) = cerror%(2) + 1
wrong% = wrong% + I
vectornum%(wrong%) = missed%

END IF
LOOP
CLOSE #4
classcount%(1) = 50
classcount%(2) = 50
count% = classcount%(1) + classcount%(2)

prob!(2) = cerror(1) / classcount%(1)
prob!(3) = cerror%(2) / classcount%(2)
prob!(1) = I - prob!(2)
prob!(4) = I - prob!(3)
prob!(5) = (classcount%(1) / count%) * prob!(1)

+ (classcount%(2) / count%) * prob!(4)

PRINT #3, LEFT$(net$, LEN(net$) - 4);
IF LEN(net$) - 4 = 4 THEN PRINT #3, SPC(4);
IF LEN(net$) - 4 = 5 THEN PRINT #3, SPC(3);
IF LEN(net$) - 4 = 6 THEN PRINT #3, SPC(2);

FOR i = 1 TO wrong%
PRINT #3, vectornum%(i);

NEXT i
PRINT #3,
IF a$ = "n" THEN

PRINT #1, LEFT$(net$, LEN(net$) - 4),

FOR i = 1 TO 5
PRINT #1, prob!(i); SPC(4);

NEXT i
PRINT #1,

ELSEIF a$ = "y" THEN

PRINT #1, CHR$(34); LEFT$(net$, LEN(net$) - 4); CHR$(34);

FOR i = I TO 5
PRINT #1, ","; prob!(i);
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NEXT i

PRINT #1,
END IF

LOOP
CLS
CLOSE
END

Sample input file for PTAB4.BAS containing the 8
records misclassified and the incorrect classifications
for a particular network

netl.dat

107 1
200 2
133 1
199 3
23 4

77 3
Ili 1
116 4

'Program: PTAB4.BAS
'This routine reads the data file containing the records
'misclassified and the incorrect classifications yielded by a
'net on the test set vectors for the four class runs.

'It then calculates the P matrix
'for that net. Multiplying the values of the P matrix by 100
'yields the actual observed percent correct (or wrong)
'performance of the net. The routine writes this

'info to a file in rows for each net data file in the name$
'file. if the user specifies LOTUS format, the result is a
'table ready for import into LOTUS for computing the average
'of each column
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OPTION BASE 1
REM $DYNAMIC
LOCATE 23, 2
INPUT "What source file for the data file names"; name$
CLS
LOCATE 23, 2
INPUT "Filename for correct probability matrix table"; matrix$
CLS
LOCATE 23, 2
INPUT "Filename for misclassified prob. matrix table"; matrixa$
CLS
LOCATE 23, 2
INPUT "Filename for out of class vector log"; verror$
CLS
DO

LOCATE 23, 2
INPUT "Do you want Lotus type file"; A$

LOOP UNTIL A$ = "y" OR A$ = "n"

CLS
LOCATE 12, 31
PRINT "WORKING .....
DIM cerror%(17), vectornum%(400), classcount%(4)

DIM prob!(17)
OPEN matrix$ FOR OUTPUT AS #1
OPEN name$ FOR INPUT AS #2
OPEN verror$ FOR OUTPUT AS #3
OPEN matrixa$ FOR OUTPUT AS #5
PRINT #3, "Net ID Out - of - Class vectors"

PRINT #3, " ----------------------------------------------
DO UNTIL EOF(2)

FOR i = I TO 17

cerror%(i) = 0

NEXT i
wrong% = 0
INPUT #2, net$
OPEN net$ FOR INPUT AS #4
DO UNTIL EOF(4)

INPUT #4, missed%, called%

missed% = missed% + 1
IF missed% MOD 4 = I THEN

IF called% = 2 THEN
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cerror%(6) = cerror%(6) + I

ELSE

IF called% = 3 THEN
cerror%(7) = cerror%(7) + I

ELSE
cerror%(8) = cerror(8) + I

END IF
END IF

ELSE
IF missed% MOD 4 = 2 THEN

IF called% = I THEN
cerror%(9) = cerror%(9) + I

ELSE
IF called% = 3 THEN

cerrorI(O) = cerror/(10) + 1
ELSE

cerror%(11) = cerror%(11) + I

END IF

END IF
ELSE

IF missed% MOD 4 = 3 THEN
IF called% = I THEN

cerror%(12) = cerror%(12) + 1
ELSE

IF called/ = 2 THEN

cerror%(13) = cerror%(13) + 1

ELSE
cerror/(14) = cerror%(14) + I

END IF
END IF

ELSE
IF called% = 1 THEN

cerror%(15) = cerror/(15) + 1

ELSE
IF called% = 2 THEN

cerrorY.(16) = cerror%(16) + I

ELSE
cerror%(17) = cerror%(17) + 1

END IF

END IF
END IF

END IF
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END IF
wrong% = wrong% + 1
vectornum%(wrong.) =missed%
LOOP
CLOSE #4
classcount%(1) = 50
classcount.(2) = 50
classcount%/(3) =50
classcount%(4) = 50
count% = classcount%(1) + classcount%(2) + classcount%(3)

+ classcount%(4)
prob!(2) = cerror%(6) / classcountl)
prob!(3) = cerror%(7) / classcount%(l)
prob!(4) = cerror%(8) / classcount%(1)
prob!(l) = 1 - (prob!(6) + prob!(7) + prob!(8))
probl(5) = cerror%(9) Iclasscount%(2)
prob!(7) = cerror%(1O) Iclasscount%(2)-
prob!(8) = cerror%(11) /classcount%(2)
prob!(6) = 1 - (prob!(9) + prob!(10) + prob!(11))
prob!(9) =cerror%(12) /classcount%(3)
prob!(10) =cerror%(13) Iclasscount%(3)
prob!(12) =cerror%(14) Iclasscount%/(3)
prob!(11) =1 - (prob!(12) + prob!(13) + prob!(14))
prob!(13) =cerror%(15) / classcount%(4)
prob!(14) =cerror%(16) / classcount%(4)
prob!(15) =cerror%(17) / classcount%(4)
prob!(16) I - (prob!(15) + prob!(16) + prob!(17))
A = (classcount.(I) / count%.) * prob!(1)
B = (classcount.(2) / count%) * prob!(2)
C = (classcount%(3) / count%!) * prob!(3)
D = (classcount.(4) / count%,) * prob!(4)
prob!(17) = A + B + C + D
PRINT #3, LEFT$(net$, LEN(net$) - 4)-;

IF LEN(net$) - 4 = 4 THEN PRINT #3, SPC(4);
IF LEN(net$) - 4 = 5 THEN PRINT #3, SPC(3);
IF LEN(net$) - 4 = 6 THEN PRINT #3, SPC(2);
FOR i = 1 TO wrong%

PRINT #3, vectornum%(i);
NEXT i
PRINT #3,
IF A$ = "n" THEN

PRINT #1, LEFT$(net$, LEN(net$) - 4),
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FOR i = 1 TO 8
PRINT #1, prob! (i); SPC(4);

NEXT i
PRINT #1,

ELSEIF A$ = "y" THEN
PRINT #1, CHR$(34); LEFT$(net$, LEN(net$) -4); CHR$(34);
FOR i = 1 TO 8

PRINT #1, ","; prob!(i);
NEXT i
PRINT #1,

END IF
IF A$ = "n" THEN

PRINT #5, LEFT$(net$, LEN(net$) - 4),
FOR i = 9 TO 17

PRINT #5, prob!(i); SPCi);
NEXT i
PRINT #5,

ELSEIF A$ = "y" THEN

PRINT #5, CHR$(34); LEFT$(net$, LEN(net$) -4); OHR$(34);
FOR i = 9 TO 17

PRINT #5, ",;prob!(i);
NEXT i
PRINT #5,

END IF
LOOP
OLS
CLOSE
END
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